Les premiers microprocesseurs apparus dans les années 1970 ont déclenché une cascade de révolutions technologiques dans les domaines de l’informatique, des télécommunications, d’Internet et des réseaux sociaux. La prochaine vague pourrait être l’IA. J’ai de l’expérience dans toutes les vagues précédentes, du codage de base à la gestion de services de télécommunications concurrentiels, en passant par l’exploitation d’un service téléphonique Internet et l’analyse de diverses entreprises de médias. (Et mon fils est en IA.)
Je suis passé à l’énergie il y a plus de 20 ans, lorsque j’ai vu l’éminente transformation de ce secteur.
Aujourd’hui, je constate des vagues similaires dans la transition vers l’abandon des combustibles fossiles : les énergies renouvelables, le transport, le chauffage et l’hydrogène. Toutefois, il existe également des différences importantes entre cette révolution énergétique et celle qui a touché l’industrie informatique.
Dans les deux révolutions, chaque vague a renforcé la précédente. Il est cependant difficile de prédire quand une nouvelle vague surviendra ni sous quelle forme. Les fournisseurs traditionnels ont souvent du mal à adopter et à s’adapter aux nouvelles technologies et aux nouveaux modèles d’affaires, ce qui finit par éroder leur valeur. L’écosystème devient plus grand et plus complexe, créant ainsi des opportunités pour de nouveaux acteurs d’émerger et de prospérer. Les deux révolutions ont des répercussions sur la géopolitique. Par exemple, au cours des années 1990, les pays en développement ont vu diminuer leurs recettes internationales provenant des télécommunications, tandis que certains pays verront leurs recettes tirées des énergies fossiles baisser dans un avenir rapproché. Même si les services publics, comme les télécommunications, le câble et l’électricité, survivent à la tourmente, ils sont cantonnés dans leur rôle d’opérateurs, ne pouvant pas se développer dans la chaîne de valeur. En revanche, les services publics de gaz peuvent connaître une contraction.
Toutefois, la transition énergétique surpasse la révolution numérique en termes d’impact économique. Elle ne se limite pas à avoir un impact économique, elle est aussi physique grâce à des projets d’infrastructure colossaux. De plus, elle se distingue par le fait que, même si les progrès technologiques ont déclenché l’ère de l’informatique, les préoccupations environnementales constituent le moteur du changement actuel. Par conséquent, les politiques gouvernementales (et certains diront même l’ingérence) jouent un rôle plus important dans la transition énergétique.
Comme la consommation d’énergie des centres de données augmente rapidement, il est possible que la transition énergétique et la transformation numérique en cours convergent. Espérons que ces changements ne se transforment pas en tsunami.
The first microchips in the 1970s sparked a series of transformation waves in computing, telecommunications, Internet and social media. The next wave could be AI. I have experience in all the previous waves, from basic coding to managing competitive telecom services, operating an internet telephone service, and analyzing various media companies. (And my son is in AI.)
I switched to energy over 20 years ago, as I saw the eminent transformation of this sector.
I observe similar waves in the transition away from fossil fuels: renewables, transportation, heating, and hydrogen. However, there are also notable distinctions between the energy transition and the one experienced by the computer industry.
In both revolutions, successive waves superimposed and amplified their predecessors. Yet, predicting when the next wave will emerge, or what shape it may take, remains elusive. Traditional suppliers often struggle to adopt and adapt to new technologies and business models, ultimately eroding their value. The ecosystem becomes larger and more complex, creating opportunities for new players to emerge and thrive. Both revolutions have geopolitical impacts. For instance, the 1990s saw a reduction in international telecom revenues for developing countries, while some countries will see reduced fossil fuel revenues in the coming years. Public utilities, such as telecom, cable, and electricity, survive the turmoil, but remain limited to being mere carriers, unable to expand up or down the value chain. Gas utilities, on the other hand, may experience contraction.
However, the energy transition dwarfs the digital revolution. It impacts economies not only numerically but physically, with massive infrastructure projects. What also sets it apart is that while technological advances sparked the computer age, environmental concerns drive the current shift. Therefore, government policies (and some may say meddling) are more important in the energy transition.
As data centre energy consumption rises rapidly, there is a possibility that the ongoing energy transition and digital transformation will converge. Let’s hope these changes don’t turn into a tsunami.
Les gouvernements d’Amérique du Nord et d’Europe ont mis en place plusieurs politiques pour favoriser la production d’hydrogène à bas carbone (vert ou bleu, pour les gens qui aiment les couleurs), mais peu de politiques pour forcer son utilisation.
Actuellement, l’hydrogène de source fossile est surtout utilisé en raffinage, pour la fabrication de fertilisant et pour la fabrication de méthanol. Cet hydrogène est souvent auto-produit sur place à partir de gaz naturel. Ces usages particuliers sont fortement exposés aux marchés et très sensibles aux prix. On comprend qu’il y a alors peu d’intérêt pour la même molécule, mais qui coûte plus cher à produire juste parce qu’on émet moins de carbone.
L’industrie de l’hydrogène à bas carbone c’est alors tournée vers des usages émergents, comme la réduction du minerai de fer ou le transport lourd. Or, il y a encore peu de demande pour ces usages, et il n’est même pas certain qu’une demande importante émerge en transport. En conséquence, on voit des projets de production d’hydrogène à bas carbone être stoppés aux É.-U. et au Canada, ainsi que des projets de pipeline s’arrêter en Allemagne, simplement parce qu’il n’y a pas de preneurs.
À court terme, je pense qu’on doit considérer l’hydrogène à bas carbone comme un produit de première qualité, dont la quantité est limitée et donc le vendre pour des usages moins exposés aux marchés, comme certains usages industriels où de l’hydrogène très pur est requis, par exemple en fabrication microélectronique. En fait, pour certains usages industriels, l’hydrogène vert pourrait même être concurrentiel si fabriqué près de là où il est utilisé, évitant le transport d’hydrogène fossile fabriqué dans les usines pétrochimiques.
L’effet de mettre un prix général sur le carbone est d’amener les entreprises et les consommateurs à chercher des solutions pour réduire ce coût en utilisant des technologies renouvelables, la biomasse ou de l’hydrogène à bas carbone.
Cependant, le prix du carbone à n’importe quel niveau politiquement viable ne sera pas suffisant pour faire la transition dans les délais requis. • C’est certainement le cas en efficacité énergétique, par exemple, car devenir plus efficace diminue l’impact du prix du carbone. • Aussi, un prix sur le carbone visible aux consommateurs peut entraîner une vive opposition et, finalement, retarder la transition. • Pour les entreprises, ajouter un coût dans un marché concurrentiel peut réduire la compétitivité.
Un prix sur le carbone est un peu comme une hache pour dégrossir un tronc d’arbre. C’est bien, mais pour finir le totem de la transition, il faut aussi des outils plus précis et on utilise alors des couteaux ou des ciseaux de sculpteur. Ainsi, en plus du prix sur le carbone, des politiques plus ciblées sont requises. Pour y arriver collectivement, il faudra créer un climat propice aux investissements, adopter des innovations, et changer nos comportements, car seulement mettre un prix sur le carbone et conduire des voitures électriques ne suffiront pas.
J’ai bien aimé la conférence HyPorts-Meet4Hydrogen, à Trois-Rivières cette semaine.
Les présentations de Hy2gen et de Greenfield Global étaient particulièrement intéressantes. Dans les 2 cas, on utilise de l’hydrogène vert dans des processus industriels, et non directement comme un vecteur énergétique. – Hy2Gen, à Baie-Comeau, produira du nitrate d’ammonium servant à faire des explosifs. L’hydrogène vert, produit à partir de l’hydroélectricité de la Côte-Nord, y sert d’intrant pour le nitrate d’ammonium aussi utilisé sur la Côte-Nord, permettant de décarboner en partie le secteur minier. On pourrait presque parler d’économie circulaire! – Greenfield produit du méthanol et de l’éthanol, et du biodiesel et du carburant d’aviation durable (SAF) dans le futur, qui peuvent être utilisés comme vecteur énergétique, l’hydrogène étant un intrant dans ces processus. Ces produits visent d’abord le marché maritime, et éventuellement le transport terrestre et aérien.
Les projets Hy2Gen et Greenfield s’harmonisent également avec la stratégie du gouvernement du Québec (qui présentait également) visant à promouvoir l’utilisation locale de l’hydrogène vert.
Il y a eu plusieurs présentations de ports européens, comme Rotterdam et Dunkerque. L’échelle des projets d’hydrogène vert et de carburants renouvelables qui y sont mis en œuvre est colossale. Il n’y a pas de doute que nous aurons besoin de grande quantité d’hydrogène vert, à la fois pour remplacer l’hydrogène gris dans ses applications actuelles (ammoniac, méthanol, réduction du minerai de fer, etc.) et pour l’expansion de ces applications.
Quelques présentations, dont celles de Rotterdam et de Dunkerque, supposent une grande demande pour l’hydrogène en tant que vecteur énergétique direct pour le transport terrestre. À écouter l’ensemble des présentations, je vois mal comment on pourrait justifier l’utilisation d’hydrogène dans des piles à combustible ou dans des moteurs à combustion interne en transport alors qu’on peut utiliser du méthanol, de l’éthanol ou du diesel renouvelables (fabriqués en partie avec de l’hydrogène vert comme intrant). Évidemment, c’est plus cher que le diesel fossile, mais vraisemblablement moins cher que de déployer une infrastructure de distribution d’hydrogène pour les quelques applications où l’électrification directe ou par batterie ne sera pas possible. De plus, les véhicules actuels peuvent être utilisés au lieu d’avoir des véhicules à pile à combustible 2 fois plus chers… À mon avis, il y aura probablement quelques applications de niche pour les piles, mais des niches, pas plus. On pourrait critiquer l’empreinte carbone des carburants renouvelables, qui est potentiellement plus grande que celle de la chaîne hydrogène vert et pile à combustible, mais les carburants renouvelables constituent un grand pas et probablement une approche de décarbonation à moindre coût. Aussi, notons qu’il y aura à surmonter quelques contraintes, comme le point de congélation du biodiésel.
I really enjoyed the HyPorts-Meet4Hydrogen conference in Trois-Rivières this week.
The Hy2gen and Greenfield Global presentations were particularly interesting. In both cases, green hydrogen is used in industrial processes, and not directly as an energy carrier. – Hy2Gen, in Baie-Comeau, will produce ammonium nitrate used to make explosives. Green hydrogen, produced from North Shore hydroelectricity, is used as an input for the ammonium nitrate also used on the North Shore, making it possible to partially decarbonize the mining sector. We could almost talk about a circular economy! – Greenfield produces methanol and ethanol, and biodiesel and sustainable aviation fuel (SAF) in the future, which can be used as an energy carrier, with hydrogen being an input in these processes. These products are primarily aimed at the maritime market, and eventually at land and air transport.
Hy2Gen and Greenfield projects also align with the strategy of the Québec government (also presenting) to promote the local use of green hydrogen.
There were several presentations from European ports, such as Rotterdam and Dunkirk. The scale of green hydrogen and renewable fuel projects (which are being implemented there) is colossal. There is no doubt that we will need large amounts of green hydrogen, both to replace grey hydrogen in its current applications (ammonia, methanol, iron ore reduction, etc.) and for the expansion of these applications.
Some presentations, including those of Rotterdam and Dunkirk, assume a great demand for hydrogen as a direct energy carrier for land transport. Listening to all the presentations, I find it difficult to see how we could justify the use of hydrogen in fuel cells or in internal combustion engines in transportation when we can use renewable methanol, ethanol or diesel (partly made with green hydrogen as an input). Obviously, this is more expensive than fossil diesel, but presumably cheaper than deploying hydrogen distribution infrastructure for the few applications where direct or battery electrification will not be possible. In addition, current vehicles can be used instead of having fuel cell vehicles that are 2 times more expensive… In my opinion, there will probably be a few niche apps for fuel cells, but niches, no more. One could criticize the carbon footprint of renewable fuels, which is potentially larger than that of the green hydrogen-fuel cell pathway, but renewable fuels are a big step forward and probably a lower-cost decarbonization approach. Also, it should be noted that there will be some constraints to overcome, such as the freezing point of biodiesel.
Une entreprise de services écoénergétiques (communément appelée ESÉ, ou «?Energy Service Company?», ESCo, en anglais) est une entreprise qui développe, installe et organise le financement de projets visant à optimiser l’efficacité énergétique, la gestion de pointe, et les coûts des installations énergétiques d’entreprises et d’institutions.
Généralement, les ESÉ peuvent offrir les services suivants : – Diagnostiquer la consommation énergétique et l’état des systèmes. – Élaborer et organiser le financement de projets d’efficacité énergétique. – Installer et entretenir l’équipement. – Mesurer et vérifier les économies d’énergie. – Opérer les systèmes de gestion de pointe. – Valider les factures du distributeur d’électricité et du détaillant.
Les principaux leviers techniques sont l’immotique, l’éclairage, le chauffage et la climatisation des locaux, ainsi que le chauffage de l’eau.
Les grandes ESÉ prennent à leur compte certains risques techniques et de performance associés au projet par un contrat de performance énergétique (CPE) qui finance les améliorations à même les économies futures, sur plusieurs années.
Au Québec, les contrats de performance se sont développés rapidement à partir de 1998, après des modifications réglementaires touchant les appels d’offres des organismes publics. Dans la province, les deux principales ESÉ sont Ecosystem et Énergère. Econoler, l’une des premières ESÉ au monde, fut fondée en 1981 par Hydro Québec et Dessau-Soprin, un bureau de génie-conseil. Les dirigeants d’Ecololer ont racheté l’entreprise par la suite.
En règle générale, les clients des ESÉ bénéficient de l’expertise d’un spécialiste qui les guide et les défend dans leurs interactions contractuelles et techniques avec les ESÉ. Ce spécialiste les aide à évaluer les économies d’énergie, à les calculer et à les mesurer chaque année, ainsi qu’à mettre en place des mécanismes de compensation en cas de succès ou d’échec dans l’atteinte de ces économies.
On trouve également plusieurs joueurs spécialisés qui ne sont pas des ESÉ à proprement parler, ne proposant que quelques services. Certains s’appuient sur l’intelligence artificielle, comme BrainBox AI et vadiMAP. Des firmes d’ingénierie sont également présentes sur le marché, principalement dans la conception et l’élaboration. De plus, de grandes entreprises européennes comme Engie ont récemment fait leur entrée sur le marché.
An energy service company, commonly referred to as an ESCo, specializes in enhancing energy efficiency, managing energy peaks, and reducing energy expenses for businesses and organizations.
Generally, ESCos may offer the following services: – Diagnose energy consumption and system status. – Develop and organize the financing of energy efficiency projects. – Install and maintain equipment. – Measure and verify energy savings. – Operate state-of-the-art management systems. – Validate invoices from the electricity distributor and the retailer.
The main technical levers are building automation, lighting, space heating and air conditioning, and water heating.
Large ESCos take on some of the technical and performance risks associated with the project by funding improvements through an Energy Performance Contract (EPC), which is funded from future energy savings over several years.
In the Québec market, performance contracts developed strongly after 1998, following regulatory changes applicable to calls for tenders by public bodies. In the province, the two main ESCos are Ecosystem and Énergère. Econoler, one of the first ESCos in the world, was founded in 1981 by Hydro Québec and Dessau-Soprin, a consulting engineering firm. Ecololer’s managers later bought the company.
Typically, ESCo customers have an expert who guides and advocates for them in their interactions with the ESCos, specifically in regards to contractual and technical matters. This expert’s role is to help evaluate energy savings, determine how to calculate and quantify them annually, and negotiate compensation arrangements between the parties if the desired savings are not met.
There are also several niche players, not necessarily ESCos, that provide limited services, some of which utilize artificial intelligence, such as BrainBox AI and vadiMAP. Engineering firms are also active in the market, particularly in the design and development stages. We are also seeing the emergence of large European companies like Engie.
Le système énergétique mondial est basé sur l’énergie fossile (charbon, pétrole et gaz naturel) depuis deux siècles. Les combustibles fossiles sont les marchandises ultimes («?commodities?» en anglais) : faciles à transporter, faciles à stocker et standardisées. Le système énergétique fossile est ainsi une immense monoculture. Une pompe à essence pompe essentiellement le même produit, qu’elle soit à Québec, Dallas, Paris ou Nairobi. Les grandes pétrolières contribuent d’ailleurs à uniformiser les produits et à propager les meilleures façons de faire mondialement.
Les marchandises fossiles sont fortement exposées aux aléas géopolitiques. Si Poutine décide de fermer le robinet, l’Europe risque de geler. Si des révolutionnaires décident de fermer le golfe d’Aden, les pétroliers doivent emprunter des trajets plus longs et coûteux.
Le système énergétique mondial électrifié est différent. L’électricité ne peut être stockée efficacement pour être transportée : les lignes électriques ont au plus quelques milliers de kilomètres. S’il est possible de stocker l’électricité dans des batteries ou avec de l’hydroélectricité pompée, la période économique de stockage se mesure en heures ou en jours. La production est donc plus locale et rapidement consommée.
Cependant, les sources d’électricité et les besoins d’électrification varient beaucoup d’un endroit à l’autre. Si on peut se climatiser avec du solaire en Australie du Sud, on se chauffe à l’hydroélectricité au Québec. Puis, c’est l’éolien aux Pays-Bas et le nucléaire en France.
La géopolitique sera beaucoup moins importante. Si la Chine ne peut pas nous envoyer de nouveaux panneaux solaires, d’autres le feront et on peut toujours adopter les politiques industrielles pour en faire ici. De plus, les panneaux déjà livrés continueront de produire de l’électricité, alors qu’on serait immobilisé et gèlerait (ou suerait) sans un approvisionnement continu en énergie fossile.
Voici donc une autre caractéristique du système énergétique mondial électrifié : il sera local. Les choix d’électrification des sociétés dépendront des ressources disponibles localement et les solutions varieront en conséquence. Ce qui marche en Californie ne marche pas nécessairement ici.
Cependant, les outils seront les mêmes partout : production renouvelable (centralisée ou distribuée), stockage, transport, distribution, et utilisation efficace. La diffusion des connaissances techniques et des meilleures pratiques d’affaires devra être plus explicite que ce n’était nécessaire avec les grandes pétrolières. Chaque région devra développer une bonne vigie industrielle et technologique pour apprendre des autres, partager ses bons coups, et comparer régulièrement sa performance.
Donc, préparez-vous à votre avenir électrifié : produire et consommer localement tout en vous inspirant d’idées mondiales.
The world’s energy system has been based on fossil fuels (coal, oil, and natural gas) for two centuries. Fossil fuels are the ultimate commodities: easy to transport, easy to store and standardized. The fossil fuel energy system is thus a huge monoculture. A gas pump pumps the essentially same product, whether it’s in Québec City, Dallas, Paris or Nairobi. The big oil companies are also helping to standardize products and propagate best practices globally.
Fossil fuels are highly exposed to geopolitical uncertainties. If Putin decides to turn off the tap, Europe risks freezing. If revolutionaries decide to close the Gulf of Aden, oil tankers must take longer and more expensive routes.
The electrified global energy system is different. Electricity cannot be efficiently stored for transport: power lines have at most a few thousand kilometres. While it is possible to store electricity in batteries or with pumped hydroelectricity, the economic storage period is measured in hours or days. The production is therefore more local and quickly consumed.
However, the sources of electricity and the needs to electrify vary greatly from one place to another. If you can get solar power to stay cool in South Australia, you heat your home with hydroelectricity in Québec. Then there is wind power in the Netherlands and nuclear power in France.
Geopolitics will be much less important. If China can’t send us new solar panels, others will, and we can always adopt the industrial policies to make them here. In addition, the panels already delivered will continue to generate power, while we would be stuck and freezing (or sweating) without a continuous supply of fossil fuels.
So here’s another feature of the electrified global energy system: it will be local. Regional electrification choices will depend on locally available resources and solutions will vary accordingly. What works in California doesn’t necessarily work here.
However, the tools will be the same everywhere: renewable generation (centralized or distributed), storage, transmission, distribution, and efficient use. The dissemination of technical knowledge and business best practices will have to be more explicit than was necessary with the big oil companies. Each region will have to develop a good industrial and technological watch to learn from others, share its successes, and regularly compare its performance.
So, get ready for your electrified future: producing and consuming locally while being inspired by global ideas.
Dotée d’une hydroélectricité abondante, la chaîne de valeur de l’électricité du Québec s’est développée à sa façon. À titre de comparaison, la figure ci-dessous illustre les rôles communs des différents acteurs qui fournissent de l’électricité dans le monde.
En Europe, au Royaume-Uni, dans la plupart des États-Unis et en Ontario et en Alberta, des acteurs discrets remplissent chacune des cases du diagramme. Plus particulièrement, les producteurs vendent de l’électricité sur les marchés de l’énergie, achetée par des détaillants indépendants pour la revendre aux clients finaux. Les détaillants ne vendent que de l’énergie et ils ne sont pas propriétaires du réseau reliant les producteurs aux clients. Les détaillants peuvent être des entreprises privées concurrentielles ou des organismes publics sans but lucratif, selon les régions. Le flux d’électricité des producteurs aux clients est contrôlé par un opérateur de système indépendant. Les réseaux de transport et de distribution, qui sont des goulots, sont réglementés sur le prix, souvent avec des incitations à la fiabilité et aux coûts. Mais, dans l’ensemble, c’est la même chose que vous (le client) ayant un accès Internet filaire d’une société de téléphone ou de câblodistribution (c.-à-d. le réseau) pour ensuite acheter des services multimédias vendus par Netflix ou Apple (c.-à-d. les producteurs).
Au Québec, Hydro Québec est le producteur, le transporteur et le distributeur dominants. Elle a son propre opérateur de système interne et utilise des appels d’offres et des contrats gré à gré, et non un marché, pour acheter auprès de certains producteurs d’électricité indépendants. La vente au détail d’électricité est fournie avec la distribution d’électricité et il n’y a pas d’agrégateurs pour la gestion des pointes. Il y a très peu de stockage sur le réseau (autre que les vastes réservoirs) et peu de ressources énergétiques distribuées (RÉD). L’organisme de réglementation provincial n’approuve plus les dépenses du service public et les prix de l’électricité, maintenant rattachés à l’indice des prix à la consommation, jusqu’à concurrence de 3 %.
Le dégroupement de la chaîne de valeur de l’électricité du Québec, en partie ou autant qu’en Europe, ne peut se faire sans évaluer les avantages et les inconvénients de cette approche. Cependant, nous devons certainement regarder comment d’autres ont fait face à la rareté d’électricité alors que nous nous prélassions dans l’abondance. Parce que, après tout, il y aura plus de rareté que d’abondance à l’avenir.
Endowed with abundant hydropower, Québec’s electricity value chain developed in its own way. For comparison, the figure below illustrates the common roles of the various players delivering electricity to the world.
In Europe, the UK, most of the US and in Ontario and Alberta, discrete actors fill each of the boxes in the diagram. Most notably, producers sell electricity on energy markets, bought by independent retailers for resale to end customers. Retailers only sell energy and they do not own the grid connecting producers to customers. Retailers can either be competitive private ventures or not-for-profit public agencies, depending on regions. The flow of electricity from producers to customers is controlled by an independent system operator. The transmission and distribution grids, which are bottleneck facilities, are regulated on price, often with reliability and cost incentives. But, overall, this is the same as you (the customer) having a wired Internet access from a phone or cable company (aka the grid) and then buying media services sold by Netflix or Apple (aka producers).
In Québec, Hydro Québec is the dominant producer, transmitter, and distributor. It has its own internal system operator and uses tenders and negotiated contracts, not a market, to buy from some independent power producers. Electricity retail is bundled with electricity distribution and there are no aggregators for peak management. There is very little grid storage (other than the vast reservoirs) and few Distributed Energy Resources (DER). The provincial regulator no longer approves spending by the utility and the electricity prices, now pegged to the consumer price index, up to 3%.
Unbundling Québec’s electricity value chain, partly or as much as it is in Europe, cannot be done without assessing the pros and cons of this approach. However, we certainly need to look how others have coped with electricity scarcity while we basked in abundance. Because, after all, there will be more scarcity than abundance in the future.
With the energy transition, Québec is currently at a turning point reminiscent of the period following the Quiet Revolution, in the 1960s and 1970s, when successive Unionist, Liberal and PQ governments initiated the development of the Manic-Outardes project, which doubled Québec’s electricity generation capacity, and then Churchill Falls (Labrador) and James Bay, which doubled it again. Today, there is again talk of doubling by 2050. But increasing Hydro Québec’s generation capacity was not the only highlight of the 1960s and 1970s.
In the 1960s and 1970s, governments also used the construction of major hydro plants to enable French-speaking Quebecers to take control of the province’s economic development. This economic development occurred both in the secondary sector (electrical equipment manufacturing and aluminum smelters) and in the tertiary sector (large consulting engineering firms and, a little later, in information technology).
We can still hear the echoes of this decision because there are about 65,000 jobs related to the electricity industry, only a third of which are at Hydro-Québec.
Québec is now Canada’s electrical manufacturing hub: we have 36.3% of Canadian electrical manufacturing jobs, but only 22.7% of total Canadian manufacturing jobs. In other words, we have proportionally twice as many jobs in electrical equipment manufacturing as Canada outside Québec. This includes the manufacture of electrical power generation and systems, as well as appliances used by residential and commercial customers, such as heaters and advanced control systems.
Obviously, the impact of these industrial policies on the aluminum smelting industry is well known: it has experienced considerable growth, with 30,000 jobs.
And that’s not all: this period also saw the emergence of world-class Québec consulting engineering firms, some of which reached the top-10 in the world, such as SNC-Lavalin (AtkinsRéalis). Our consulting engineering firms are present throughout the value chain, from large dams to residential energy efficiency assessments.
In the 1970s, the industry’s need for control and management systems propelled the information technology sector — CGI, LGS, an IBM Company and DMR come to mind. In a way, it’s safe to say that even the artificial intelligence sector that Québec is now known for was driven by the electrification decisions made by our grandparents.
Avec la transition énergétique, le Québec se trouve actuellement à un tournant qui rappelle la période qui a suivi la Révolution tranquille, dans les années 60 et 70, alors que les gouvernements successifs, unionistes, libéraux ou péquistes, ont alors enclenché le développement des grands ouvrages de Manic-Outardes, qui ont doublé la capacité de production du Québec, de Churchill Falls (au Labrador) et de la Baie-James, qui l’ont encore doublé. Aujourd’hui, on parle à nouveau de doubler à l’horizon 2050. Mais augmenter la capacité de production d’Hydro Québec ne fut pas le seul point marquant des années 60 et 70.
Dans les années 60 et 70, les gouvernements ont aussi utilisé la construction des grands ouvrages pour permettre aux Québécois francophones de prendre en main le développement économique de la province. Ce développement économique fut à la fois dans le secteur secondaire (fabrication d’équipement électrique et alumineries) et dans le secteur tertiaire (grandes firmes de génie-conseil et, un peu plus tard, en technologies de l’information).
On entend encore les échos de cette décision d’avenir, car il y a environ 65?000 emplois liés à l’industrie de l’électricité, dont un tiers seulement à Hydro-Québec.
Le Québec est aujourd’hui le pôle canadien de fabrication de matériel électrique : nous avons 36,3 % des emplois canadiens de fabrication de matériel électrique, mais seulement 22,7 % des emplois manufacturiers totaux canadiens. Dits autrement, nous avons proportionnellement 2 fois plus d’emplois en fabrication de matériel électrique que le Canada hors Québec. On parle ici de fabrication d’appareils de production et de réseaux électriques, mais aussi d’appareils utilisés chez les clients résidentiels et commerciaux, comme les appareils de chauffage et les systèmes de contrôle de la pointe. Évidemment, l’impact de ces politiques industrielles sur l’industrie de la transformation de l’aluminium est bien connu : elle a connu un essor considérable, avec 30?000 emplois.
Ce n’est pas tout : cette période a aussi vu l’émergence de firmes québécoises de génie-conseil de calibre international dont certaines sont parvenues au top-10 mondial, comme SNC-Lavalin (AtkinsRéalis). Nos firmes de génie-conseil sont présentes tout au long de la chaîne de valeur, des grands barrages jusqu’aux évaluations d’efficacité énergétique des résidences.
Dans les années 70, les besoins de systèmes de contrôle et de gestion du secteur ont propulsé le secteur des technologies de l’information — on pense à CGI, LGS, an IBM Company et DMR. D’une certaine façon, on peut dire que mêmele secteur de l’intelligence artificielle qui fait maintenant la renommée du Québec a été poussé par les décisions d’électrification prises par nos grands-parents.
Avec Hydro-Québec, le Québec est doté de ressources naturelles incomparables, dont un potentiel hydroélectrique et un réseau d’électricité uniques. Son système électrique est également hautement intégré, de la production aux clients.
D’autres régions, confrontées à des choix énergétiques plus difficiles, ont adopté des structures industrielles différentes. Je veux ici explorer une tendance forte aux États-Unis et voir comment nous pourrions nous en inspirer : Community Choice Aggregation.
Les agrégateurs communautaires (Community Choice Aggregators ou CCA) sont des organismes publics sans but lucratif qui ont une certaine exclusivité de vente au détail de l’électricité dans une région. Les CCA permettent aux administrations locales (villes et comtés) de se procurer de l’énergie au nom de leurs résidents, de leurs entreprises et de leurs municipalités tout en recevant des services de transport et de distribution de leur compagnie d’électricité locale. En agrégeant la demande, les collectivités obtiennent un effet de levier pour négocier de meilleurs tarifs avec des fournisseurs concurrentiels et choisir des sources d’énergie plus vertes. Étant locales, les CCA peuvent également être mieux placées pour offrir des services et des programmes d’efficacité énergétique adaptés à leurs collectivités.
Il y a plus de 1200 CCA aux États-Unis desservant 10,6 millions de clients dans 8 états. En 2022, environ 100 térawattheures (TWh) d’électricité ont été achetés par les CCA. Les collectivités qui participent aux programmes de CCA négocient leur source de production d’énergie, utilisent le pouvoir d’achat en vrac pour réduire les coûts de l’énergie, stimulent le développement des ressources locales d’énergie renouvelable et des emplois locaux dans l’énergie propre, assurent la stabilité et la transparence des prix de l’énergie, tout en accélérant la transition vers l’énergie renouvelable avec chaque initiative. Les CCA travaillent en partenariat avec le service public existant de la région. Le CCA achète l’électricité, et le service public continue de la livrer, d’entretenir le réseau et de fournir une facturation consolidée.
Est-ce que cela pourrait être adapté au Québec?? Peut-être, pourquoi pas?? Je ne dis pas que c’est la solution, mais c’est peut-être un outil auquel il faut réfléchir.
Je suis cette tendance depuis quelques années maintenant, alors contactez-moi si vous voulez en discuter.
With Hydro-Québec, Québec is endowed with incomparable natural resources, including unique hydroelectricity potential and electricity system. Its electricity system is also highly integrated, from generation to customers.
Other regions, facing more difficult energy choices, adopted different industry structures. I want here to explore a strong trend in the US and see how we could be inspired by it: Community Choice Aggregation (CCA).
Community Choice Aggregators (CCA) are not-for-profit public agencies having some electricity retail exclusivity in an area. CCAs allow local governments (cities and counties) to procure energy on behalf of their residents, businesses, and municipalities while still receiving transmission and distribution service from their local utility provider. By aggregating demand, communities gain leverage to negotiate better rates with competitive suppliers and choose greener power sources. Being local, CCAs may also be better positioned to offer services and energy efficiency programs tailored to their communities.
There are over 1200 CCAs in the US serving 10.6 million customers across 8 states. In 2022, approximately 100 terawatt-hours (TWh) of electricity was procured by CCA communities. Communities that participate in CCA programs negotiate their source of energy generation, use bulk buying power to decrease energy costs, spur the development of local renewable energy resources and local clean energy jobs, ensure energy price stability and transparency, while accelerating the transition to renewable energy with every initiative. CCAs work in partnership with the region’s existing utility. The CCA buys the power, and the utility continues to deliver it, maintain the grid, and provide consolidated billing.
Could this be adapted to Québec? Perhaps, why not? I’m not saying that this is the solution, but it may be a tool to think about.
I have been following this trend for a few years now, so reach out to me if you want to discuss.
In the debate surrounding the upcoming Hydro-Québec bill, many opinions are circulating. Unfortunately, several concepts are mixed up, which confuses the discussion. Here are some definitions to enlighten readers.
Monopoly: The transmission and the distribution of electricity are natural monopolies. This means that there is “naturally” a single supplier that emerges in each location (or corridor for transmission). Imagine if several suppliers wanted to have poles along our streets! It doesn’t happen. However, there are already 11 electricity distributors with a monopoly in Québec: Hydro-Québec, 9 cities and a cooperative. Hydro-Québec is not the only distributor. For transmission, some companies have lines, such as Rio Tinto, and some lines have been built in partnership. Once again, Hydro-Québec is not alone.
Monopoly (bis): The production of electricity and the retail sale of electricity are not natural monopolies. In several regions, such as the European Union, several producers compete and sell electricity on an open market. Electricity retailers buy and sell this energy to consumers proposing various plans, much like we see in the telecommunications industry. Electricity is delivered from producers to consumers using the natural monopoly of transmission and distribution companies. This 4-stage structure (production-transmission-distribution-retail) is common, and Québec’s vertically integrated structure is more the exception than the rule.
Price regulation: Monopoly means price regulation. Transmission and distribution prices are always regulated to ensure a fair return on prudent investments; sometimes performance incentives (reliability, costs) are imposed, as in Great Britain or Alberta. Where production and retail are competitive, regulation can be light, mainly to ensure that prices and conditions of service are fair, and to ensure that competition works for the benefit of consumers. Also, it should be noted that prices must be regulated even for a state monopoly.
Nationalization (or privatization): The nationalization of electricity production and delivery in Québec, a legacy of the Quiet Revolution, is not seriously questioned: no one will want to sell Hydro-Québec, as Hydro One was in Ontario a few years ago. The nationalization of private electricity companies has made it possible to accelerate electrification (helping the trade balance), to develop the industrial sector of Québec’s economy (electrical equipment and aluminum), and to develop the service sector (consulting engineering and computer science). However, nationalization does not mean that the private sector has no role to play or that Hydro-Québec should be the sole producer.
Beyond words, the important thing is to set the right goals and use the levers at our disposal to achieve them, understanding the advantages and disadvantages of each model.
Dans le débat entourant le projet de loi à venir sur Hydro-Québec, beaucoup d’opinions circulent. Malheureusement, on y mélange plusieurs concepts, ce qui embrouille la discussion. Voici donc quelques définitions pour éclairer les lecteurs.
Monopole : Le transport et la distribution d’électricité sont des monopoles naturels. Ça veut dire qu’il y a «?naturellement?» un seul fournisseur qui émerge dans chaque endroit (ou corridor pour le transport). Imaginez si plusieurs fournisseurs voulaient avoir des poteaux le long de nos rues?! Ça ne se fait pas. Cependant, il y a déjà au Québec 11 distributeurs d’électricité avec un monopole : Hydro-Québec, 9 villes et une coopérative. Hydro-Québec n’est donc pas le seul distributeur. Pour le transport, certaines entreprises ont des lignes, comme Rio Tinto, et certaines lignes ont été construites en partenariat, comme avec les Mohawks vers les États-Unis. Encore ici, Hydro-Québec n’est pas seule.
Monopole (bis) : La production d’électricité et la vente au détail de l’électricité ne sont pas des monopoles naturels. Dans plusieurs régions, comme dans l’Union européenne, plusieurs producteurs se concurrencent pour faire de l’électricité vendue sur un marché ouvert. Les détaillants d’électricité achètent et revendent cette énergie aux consommateurs, selon divers plans, un peu comme on le voit dans l’industrie des télécommunications. L’électricité est livrée des producteurs aux consommateurs en utilisant le monopole naturel des entreprises de transport et de distribution. Cette structure à 4 étapes (production-transport-distribution-détail) est commune, et la structure largement intégrée verticalement du Québec est plus l’exception que la règle. Cependant, il y a aussi au Québec plusieurs autres producteurs : en éolien (Boralex, Kruger, Innergex, Énergir, etc.), avec de petites centrales hydroélectriques, certaines entreprises (comme Rio Tinto), et même certaines municipalités (comme Sherbrooke).
Réglementation des prix : Qui dit monopole dit réglementation des prix. Les prix de transport et de distribution sont toujours réglementés pour assurer un rendement correct sans être indus, forçant des investissements prudents?; parfois, les incitatifs à la performance (fiabilité, coûts) sont imposés, comme en Grande-Bretagne ou en Alberta. Là où la production et le détail sont concurrentiels, la réglementation peut être légère, essentiellement pour s’assurer que les prix et les conditions de services sont équitables, et pour s’assurer que la concurrence fonctionne pour le bien des consommateurs. Aussi, notons que les prix doivent être réglementés même pour un monopole d’État. Au Québec, la Régie de l’énergie est responsable de la réglementation du transport, de la distribution et de la vente au détail de l’électricité.
Nationalisation (ou privatisation) : La nationalisation est le transfert à l’état de la propriété d’entreprises privées. La nationalisation de la production et de la livraison de l’électricité au Québec, héritage de la Révolution tranquille, n’est pas sérieusement remise en question : personne ne voudra vendre Hydro-Québec au privé, à l’exemple d’Hydro One en Ontario il y a quelques années. La nationalisation des entreprises privées d’électricité, d’abord en 1944 puis en 1963, a permis, entre autres, d’accélérer l’électrification (aidant à la balance commerciale), de développer le secteur industriel secondaire (équipement électrique et aluminium), et de développer le secteur tertiaire (génie-conseil et informatique). Cependant, la nationalisation ne veut pas dire que le privé n’a aucun rôle à jouer ni qu’Hydro-Québec est le seul producteur, transporteur, ou distributeur.
Au-delà des mots, l’important est de fixer les bons objectifs et d’utiliser les leviers à notre disposition pour les atteindre, en comprenant bien les avantages et les inconvénients de chaque modèle.
La majeure partie de l’électricité produite dans le monde provient de la combustion du charbon ou du gaz naturel. Le nucléaire, l’hydroélectricité, l’énergie éolienne et l’énergie solaire à faibles émissions constituent le reste de la production. (J’écris ceci du Québec, où l’électricité provient principalement de l’hydroélectricité.) En d’autres termes, pour la plupart des gens dans le monde, utiliser un kilowattheure d’électricité, c’est un peu comme brûler un peu de charbon ou de gaz naturel. Mais cela change rapidement : en 2025, l’Agence internationale de l’énergie montre que la part des sources à faibles émissions se rapproche des combustibles fossiles dans la production mondiale d’électricité.
Utiliser le charbon ou le gaz naturel pour produire de l’électricité signifie que la production de chaque unité d’énergie électrique (kilowattheures ou kWh) coûte de l’argent : il faut acheter le combustible. En revanche, une caractéristique commune de l’électricité à faibles émissions est que le coût marginal de production et de livraison est pratiquement nul.
Les sources solaire, éolienne et hydroélectrique au fil de l’eau peuvent produire de l’électricité tant que le soleil, le vent ou l’écoulement de l’eau est disponible. Réduire la production ne réduit pas les coûts sociétaux.
Pour l’hydroélectricité à réservoir («?grande hydro?»), c’est un peu plus compliqué. Il n’y a pas de frais d’exploitation pour ouvrir les vannes et générer plus, et pas d’économies à fermer. Cependant, la production épuise le réservoir en amont, de sorte qu’il peut y avoir un coût d’opportunité si cette énergie pouvait être vendue à des moments différents pour un prix plus élevé. Cependant, ces centrales hydroélectriques doivent aussi maintenir un débit minimal et la gestion de plusieurs centrales le long d’un réseau fluvial nécessite des compromis, de sorte qu’elles ne sont pas entièrement pilotables. Néanmoins, les coûts marginaux d’exploitation sont nuls.
Les centrales nucléaires sont souvent conçues pour fonctionner à une puissance constante, avec des montées et baisses de puissance mesurées en jours. Certaines centrales nucléaires plus nouvelles peuvent mieux varier leur production, mais le seul coût supplémentaire est celui de l’uranium, qui est très petit. Réduire la production d’une centrale nucléaire ne réduit pas vraiment les coûts.
Enfin, les coûts du réseau de transport et de distribution sont également fixes à court terme.
Ainsi, dans un système alimenté par des sources autres que fossiles, les coûts sont constants à court terme, du moins jusqu’à sa capacité de production ou de transport. Lorsque la demande s’approche de la capacité du système, les coûts marginaux augmentent soudainement. Pour équilibrer l’offre et la demande dans un système contraint, l’opérateur du système prendra des mesures coûteuses telles que :
Démarrer des générateurs fossiles, tels que les centrales au gaz naturel, qui sont coûteuses à exploiter.
Faire appel aux batteries en réseau, achetant cette énergie à certains taux précédemment convenus.
Importer de l’électricité supplémentaire d’autres régions.
Piloter des charges contrôlables, comme la climatisation et les chauffe-eau des clients résidentiels.
Payer les grands clients industriels, comme les alumineries, pour réduire leur charge.
Ainsi, en fin de compte, un kilowattheure supplémentaire est soit «?gratuit?» (n’ajoute pas aux coûts du système), soit très coûteux (près de la capacité du système).
Cette caractéristique de tout-ou-rien soulève quelques questions pour la conception des tarifs et du marché.
Les tarifs réglementés sont conçus pour recouvrer les coûts du système, mais dans un système à faibles émissions, ils n’augmentent que pendant les périodes de pointe critiques, généralement quelques heures par an. Les tarifs de prix de pointe critiques et de remise de pointe critique peuvent donc être un meilleur signal pour les clients que les tarifs fixes selon l’heure de consommation appliqués 365 jours par an. (Les tarifs de pointe critique et les tarifs horaires peuvent être utilisés en même temps, surtout lorsque de grands générateurs non distribuables sont présents sur le système, comme en Ontario.) D’autre part, les tarifs en temps réel, qui varient constamment avec les coûts du marché, pourraient signifier que les clients sont confrontés à des prix extrêmement élevés pendant les pointes, ce qui peut conduire à l’injustice.
Dans de nombreuses régions, l’électricité est achetée et vendue dans un marché ouvert de l’énergie (mesurée en kWh, une unité d’énergie) entre les producteurs et les détaillants. Le coût marginal des générateurs fossiles fixe le prix de clôture du marché, les producteurs non émetteurs soumissionnant à zéro, sachant que tout montant supérieur à zéro est mieux que rien. Que se passe-t-il lorsqu’un système n’a que (ou presque que) des sources non émettrices?? Le prix de clôture reste à zéro la plupart du temps. Oups, ce n’est pas bon pour les affaires. Dans ces cas, un marché de capacité (mesuré en kW, une unité de puissance) peut être formé. Dans un marché de capacité, les producteurs sont payés pour la capacité potentielle qu’ils peuvent fournir pendant les périodes de pointe, que leurs actifs soient appelés ou non. Par conséquent, un plus grand nombre d’administrations compteront sur les marchés de capacité dans un avenir à faibles émissions. Une autre approche consiste à se passer entièrement des marchés et à opter pour un accord d’achat d’électricité entre une agence d’achat (ou un service public) et des producteurs d’électricité. D’autres approches mixtes peuvent également être trouvées dans le monde entier. Nous sommes encore en train d’apprendre à concevoir au mieux les marchés de l’électricité avec un réseau sans émission, et ce sujet est en évolution.
En fin de compte, attendez-vous à payer différemment pour l’électricité et les producteurs seront indemnisés différemment. Parfois, les prix de l’électricité seront moins élevés, mais parfois plus élevés qu’ils ne le sont actuellement. Cette transformation économique est similaire à certains égards à ce qui s’est passé dans les télécommunications. Il y a trente ans, nous payions pour chaque appel interurbain et chaque appel cellulaire, à des taux mesurés en dollars par minute dans le cas des appels internationaux. De nos jours, nous payons des frais fixes pour une énorme bande passante ou de grands blocs de données, et nous ne réfléchissons pas à deux fois avant de faire une vidéoconférence FaceTime avec des proches à l’étranger. Payons-nous moins pour les télécommunications?? Eh bien, pas vraiment dans l’ensemble, et c’est beaucoup plus compliqué, mais nous en obtenons beaucoup plus pour notre argent. La même chose se produira avec l’électricité.
Most of electricity generated in the world comes from burning coal or natural gas, with low emission nuclear, hydro, wind and solar making up the rest of the generation. (I’m writing this from Québec, where electricity comes mostly from hydro.) In other words, for most people in the world, using a kilowatt-hour of electricity is a bit like burning a bit of coal or natural gas. But that’s quickly changing: in 2025, the International Energy Agency shows that the share of low-emission sources is approaching fossil fuels in global electricity generation.
Using coal or natural gas to generate electricity means that producing each unit of electric energy (kilowatt-hours or kWh) costs money: one needs to buy the fossil stuff. In contrast, a common characteristic of low-emission electricity is that the marginal cost of generation and delivery is practically zero.
Solar, wind, and run-of-river hydro may produce electricity as long as the sun, the wind or the flow of water is available. Turning off generation doesn’t reduce societal costs.
For reservoir hydro (“big hydro”), it is a bit more complicated. There’s no out-of-pocket cost to open the valves and to generate more, and no savings to turn off. However, generating depletes the upstream reservoir, so there may be an opportunity cost if this energy could be sold at different times for a higher price. However, these hydro plants must maintain minimum flow and managing multiple plants along a river system requires trade-offs, so they aren’t fully dispatchable. Still, marginal operating costs are zero.
Nuclear plants are often designed to run at a constant power, with ramp-up and ramp-down measured in days. Some newer nuclear plants can better vary their generation, but the only additional cost is that of uranium, which is very small. Reducing output of a nuclear generator doesn’t really reduce costs.
Finally, the costs of the transmission and distribution grid are also fixed in the short run.
Thus, in a system powered by non-emitting sources, costs are constant in the short run, at least up to its generation or transmission capacity. When demand gets near the system capacity, marginal costs suddenly increase. To balance supply and demand in a constrained system, the system operator will take costly measures such as:
Dispatching fossil generators, such as natural gas plants, which are costly to run.
Dispatching grid batteries, buying this power at some previously agreed to rates.
Importing additional electricity from other jurisdictions.
Dispatching controllable loads, like HVAC and water heaters for residential customers.
Paying large industrial customers, like aluminum smelters, to reduce their load.
So, in the end, an additional kilowatt-hour is either “free” (does not add to system costs) or very expensive (near system capacity).
This all-or-nothing characteristic raises a few issues for tariff and market design.
Regulated tariffs are designed to recover the system costs, which only increase during critical peaks, typically a few hours per year. Critical Peak Pricing and Critical Peak Rebate tariffs may therefore be a better signal to customers than fixed Time-Of-Use (TOU) tariffs applied 365 days a year. (Both critical peak and TOU tariffs may be used at the same time, especially when large non-dispatchable generators are present on the system, like in Ontario.) On the other hand, Real Time Pricing tariffs, which vary constantly with market costs, could mean that customers face extremely high prices during peaks, and this can lead to unfairness.
In many jurisdictions, electricity is bought and sold in an open energy market (measured in kWh, a unit of energy) between producers and retailers. The marginal cost of fossil generators set the closing energy market price, with non-emitting producers bidding at zero, knowing that any closing amount above zero is better than nothing. What happens when a system has only (or mostly) non-emitting sources? The closing price remains at zero most of the time. Oops, that’s not good for business. In those cases, a capacity market (measured in kW, a unit of power) may be formed. In a capacity market, producers are paid for the potential capacity they can provide during peaks whether or not their assets are called upon. Hence, more jurisdictions will rely on capacity markets in a low-emission future. Another approach is to get away with markets entirely and go with power purchase agreement between a purchasing agency (or utility) and power producers. Other, mixed approaches may also be found around the world. We are still learning how to best design electricity markets with a non-emitting grid, and this topic is ongoing.
In the end, expect to pay differently for electricity and producers will be compensated differently. At times, electricity prices will be less, but sometime higher, than they are now. This economic transformation is similar in some ways to what happened in telecommunications. Thirty years ago, we paid for each long-distance calls and cell calls, at rates measured in dollars per minute in the case of international calls. Nowadays, we pay a flat fee for the huge bandwidth or large data blocks, and we don’t think twice before doing a FaceTime videoconference with loved ones overseas. Do we pay less for telecom? Well, not really overall, and it’s a lot more complicated, but we get much more out of our money. The same thing will happen with electricity.