Category Archives: Canada

Community Choice Aggregation : une alternative pour l’avenir de l’électricité au Québec??

Avec Hydro-Québec, le Québec est doté de ressources naturelles incomparables, dont un potentiel hydroélectrique et un réseau d’électricité uniques. Son système électrique est également hautement intégré, de la production aux clients. 

D’autres régions, confrontées à des choix énergétiques plus difficiles, ont adopté des structures industrielles différentes. Je veux ici explorer une tendance forte aux États-Unis et voir comment nous pourrions nous en inspirer : Community Choice Aggregation. 

Les agrégateurs communautaires (Community Choice Aggregators ou CCA) sont des organismes publics sans but lucratif qui ont une certaine exclusivité de vente au détail de l’électricité dans une région. Les CCA permettent aux administrations locales (villes et comtés) de se procurer de l’énergie au nom de leurs résidents, de leurs entreprises et de leurs municipalités tout en recevant des services de transport et de distribution de leur compagnie d’électricité locale. En agrégeant la demande, les collectivités obtiennent un effet de levier pour négocier de meilleurs tarifs avec des fournisseurs concurrentiels et choisir des sources d’énergie plus vertes. Étant locales, les CCA peuvent également être mieux placées pour offrir des services et des programmes d’efficacité énergétique adaptés à leurs collectivités. 

Il y a plus de 1200 CCA aux États-Unis desservant 10,6 millions de clients dans 8 états. En 2022, environ 100 térawattheures (TWh) d’électricité ont été achetés par les CCA. Les collectivités qui participent aux programmes de CCA négocient leur source de production d’énergie, utilisent le pouvoir d’achat en vrac pour réduire les coûts de l’énergie, stimulent le développement des ressources locales d’énergie renouvelable et des emplois locaux dans l’énergie propre, assurent la stabilité et la transparence des prix de l’énergie, tout en accélérant la transition vers l’énergie renouvelable avec chaque initiative. Les CCA travaillent en partenariat avec le service public existant de la région. Le CCA achète l’électricité, et le service public continue de la livrer, d’entretenir le réseau et de fournir une facturation consolidée.

Est-ce que cela pourrait être adapté au Québec?? Peut-être, pourquoi pas?? Je ne dis pas que c’est la solution, mais c’est peut-être un outil auquel il faut réfléchir.

Je suis cette tendance depuis quelques années maintenant, alors contactez-moi si vous voulez en discuter. 

Community Choice Aggregation: An Alternative for Québec’s Electricity Future?

With Hydro-Québec, Québec is endowed with incomparable natural resources, including unique hydroelectricity potential and electricity system. Its electricity system is also highly integrated, from generation to customers. 

Other regions, facing more difficult energy choices, adopted different industry structures. I want here to explore a strong trend in the US and see how we could be inspired by it: Community Choice Aggregation (CCA). 

Community Choice Aggregators (CCA) are not-for-profit public agencies having some electricity retail exclusivity in an area. CCAs allow local governments (cities and counties) to procure energy on behalf of their residents, businesses, and municipalities while still receiving transmission and distribution service from their local utility provider. By aggregating demand, communities gain leverage to negotiate better rates with competitive suppliers and choose greener power sources. Being local, CCAs may also be better positioned to offer services and energy efficiency programs tailored to their communities. 

There are over 1200 CCAs in the US serving 10.6 million customers across 8 states. In 2022, approximately 100 terawatt-hours (TWh) of electricity was procured by CCA communities. Communities that participate in CCA programs negotiate their source of energy generation, use bulk buying power to decrease energy costs, spur the development of local renewable energy resources and local clean energy jobs, ensure energy price stability and transparency, while accelerating the transition to renewable energy with every initiative. CCAs work in partnership with the region’s existing utility. The CCA buys the power, and the utility continues to deliver it, maintain the grid, and provide consolidated billing.

Could this be adapted to Québec? Perhaps, why not? I’m not saying that this is the solution, but it may be a tool to think about.

I have been following this trend for a few years now, so reach out to me if you want to discuss. 

Clear Definitions for Energizing Discussions

In the debate surrounding the upcoming Hydro-Québec bill, many opinions are circulating. Unfortunately, several concepts are mixed up, which confuses the discussion. Here are some definitions to enlighten readers.

  • Monopoly: The transmission and the distribution of electricity are natural monopolies. This means that there is “naturally” a single supplier that emerges in each location (or corridor for transmission). Imagine if several suppliers wanted to have poles along our streets! It doesn’t happen. However, there are already 11 electricity distributors with a monopoly in Québec: Hydro-Québec, 9 cities and a cooperative. Hydro-Québec is not the only distributor. For transmission, some companies have lines, such as Rio Tinto, and some lines have been built in partnership. Once again, Hydro-Québec is not alone.
  • Monopoly (bis): The production of electricity and the retail sale of electricity are not natural monopolies. In several regions, such as the European Union, several producers compete and sell electricity on an open market. Electricity retailers buy and sell this energy to consumers proposing various plans, much like we see in the telecommunications industry. Electricity is delivered from producers to consumers using the natural monopoly of transmission and distribution companies. This 4-stage structure (production-transmission-distribution-retail) is common, and Québec’s vertically integrated structure is more the exception than the rule.
  • Price regulation: Monopoly means price regulation. Transmission and distribution prices are always regulated to ensure a fair return on prudent investments; sometimes performance incentives (reliability, costs) are imposed, as in Great Britain or Alberta. Where production and retail are competitive, regulation can be light, mainly to ensure that prices and conditions of service are fair, and to ensure that competition works for the benefit of consumers. Also, it should be noted that prices must be regulated even for a state monopoly.
  • Nationalization (or privatization): The nationalization of electricity production and delivery in Québec, a legacy of the Quiet Revolution, is not seriously questioned: no one will want to sell Hydro-Québec, as Hydro One was in Ontario a few years ago. The nationalization of private electricity companies has made it possible to accelerate electrification (helping the trade balance), to develop the industrial sector of Québec’s economy (electrical equipment and aluminum), and to develop the service sector (consulting engineering and computer science). However, nationalization does not mean that the private sector has no role to play or that Hydro-Québec should be the sole producer. 

Beyond words, the important thing is to set the right goals and use the levers at our disposal to achieve them, understanding the advantages and disadvantages of each model. 

Des définitions claires pour une discussion énergisante

Dans le débat entourant le projet de loi à venir sur Hydro-Québec, beaucoup d’opinions circulent. Malheureusement, on y mélange plusieurs concepts, ce qui embrouille la discussion. Voici donc quelques définitions pour éclairer les lecteurs.

  • Monopole : Le transport et la distribution d’électricité sont des monopoles naturels. Ça veut dire qu’il y a «?naturellement?» un seul fournisseur qui émerge dans chaque endroit (ou corridor pour le transport). Imaginez si plusieurs fournisseurs voulaient avoir des poteaux le long de nos rues?! Ça ne se fait pas. Cependant, il y a déjà au Québec 11 distributeurs d’électricité avec un monopole : Hydro-Québec, 9 villes et une coopérative. Hydro-Québec n’est donc pas le seul distributeur. Pour le transport, certaines entreprises ont des lignes, comme Rio Tinto, et certaines lignes ont été construites en partenariat, comme avec les Mohawks vers les États-Unis. Encore ici, Hydro-Québec n’est pas seule.
  • Monopole (bis) : La production d’électricité et la vente au détail de l’électricité ne sont pas des monopoles naturels. Dans plusieurs régions, comme dans l’Union européenne, plusieurs producteurs se concurrencent pour faire de l’électricité vendue sur un marché ouvert. Les détaillants d’électricité achètent et revendent cette énergie aux consommateurs, selon divers plans, un peu comme on le voit dans l’industrie des télécommunications. L’électricité est livrée des producteurs aux consommateurs en utilisant le monopole naturel des entreprises de transport et de distribution. Cette structure à 4 étapes (production-transport-distribution-détail) est commune, et la structure largement intégrée verticalement du Québec est plus l’exception que la règle. Cependant, il y a aussi au Québec plusieurs autres producteurs : en éolien (Boralex, Kruger, Innergex, Énergir, etc.), avec de petites centrales hydroélectriques, certaines entreprises (comme Rio Tinto), et même certaines municipalités (comme Sherbrooke).
  • Réglementation des prix : Qui dit monopole dit réglementation des prix. Les prix de transport et de distribution sont toujours réglementés pour assurer un rendement correct sans être indus, forçant des investissements prudents?; parfois, les incitatifs à la performance (fiabilité, coûts) sont imposés, comme en Grande-Bretagne ou en Alberta. Là où la production et le détail sont concurrentiels, la réglementation peut être légère, essentiellement pour s’assurer que les prix et les conditions de services sont équitables, et pour s’assurer que la concurrence fonctionne pour le bien des consommateurs. Aussi, notons que les prix doivent être réglementés même pour un monopole d’État. Au Québec, la Régie de l’énergie est responsable de la réglementation du transport, de la distribution et de la vente au détail de l’électricité.
  • Nationalisation (ou privatisation) : La nationalisation est le transfert à l’état de la propriété d’entreprises privées. La nationalisation de la production et de la livraison de l’électricité au Québec, héritage de la Révolution tranquille, n’est pas sérieusement remise en question : personne ne voudra vendre Hydro-Québec au privé, à l’exemple d’Hydro One en Ontario il y a quelques années. La nationalisation des entreprises privées d’électricité, d’abord en 1944 puis en 1963, a permis, entre autres, d’accélérer l’électrification (aidant à la balance commerciale), de développer le secteur industriel secondaire (équipement électrique et aluminium), et de développer le secteur tertiaire (génie-conseil et informatique). Cependant, la nationalisation ne veut pas dire que le privé n’a aucun rôle à jouer ni qu’Hydro-Québec est le seul producteur, transporteur, ou distributeur. 

Au-delà des mots, l’important est de fixer les bons objectifs et d’utiliser les leviers à notre disposition pour les atteindre, en comprenant bien les avantages et les inconvénients de chaque modèle. 

NRCan Report: Biennial Snapshot of Canada’s Electric Charging Network

I was the principal author for this just-released primary research report on public EV charging, sponsored by Natural Resource Canada and done in collaboration with Mogile technologies, editor of the ChargeHub database. You may find a summary below and how to get the full report is at the end of this post.

As of 28 January 2022, there were 19,502 charging ports in 7,967 locations in Canada. These include 15,718 level 2 (240 V) ports and 3,784 level 3 (DCFC) ports operated by 28 charging networks. There are also six hydrogen fuelling stations for fuel-cell electrical vehicles. 

ChargePoint, Electric Circuit, Flo and Tesla are the largest charging network operators, accounting for almost 70% of the ports. However, most of the chargers are owned by the site hosts where they are located. In addition to charging network operators and site owners, major stakeholders in the public charging infrastructure include automakers, utilities, charger manufacturers, governments, and regulatory agencies. The public EV charging ecosystem is nascent, and a few competing or complementary business models have emerged to link the various stakeholders. These business models are still evolving, and stakeholders are adapting to the evolution in the market. 

Most chargers are owned by businesses. However, there are significant differences amongst Canadian regions, with comparatively more chargers owned by different levels of governments and utilities in Québec. By contrast, the governments, the not-for-profit organizations, and the utilities own relatively few chargers in the Prairies, with ownership types in British Columbian and Ontario falling somewhere in between. About 48 charging sites are on or near Indigenous lands. 

Depending on the business model used, either the charging network operator or the site owner earns revenues from charging. About half of level 2 ports are free or partially free to use. Another quarter is at $1 per hour or less. Excluding Tesla, most level 3 ports are in the $10 to $15 per hour range, often around $12 per hour.

About 60% of the charging sites are in large cities, and these sites tend to be larger and equipped with more level 2 ports (and relatively fewer level 3 ports) than rural sites. For rural sites, charger mix varies with the distance from a highway. Sites closer to a highway have relatively more level 3 chargers than any other category — they are on-the-go corridor chargers. Further out, they are destination chargers generally installed at commercial or public sites.

Food stores, restaurants, and bars, as well as health care, finance and insurance companies, are the most common amenities found within 100 m of charging sites. Automotive repair places and gasoline stations are more commonly found around level 3 sites than around level 2 sites.

With the many EV charging stakeholders having their own objectives and priorities, and often competing amongst them, interoperability is increasingly important. The ecosystem is working toward improved interoperability between the EVs and the chargers, between the chargers and the E-Mobility systems of a network operator, and between E-Mobility systems of various network operators. However, the full interoperability is clearly not achieved yet, with multiple incompatibilities present at various levels in the infrastructure. 

Usage of the charging infrastructure was estimated using data provided by some Canadian operators. Overall, Mogile assembled a dataset with nearly 2 million charging sessions in four thousand locations with level 2 or level 3 chargers (over 20% of the ports in Canada). The dataset has usage data from 2019, 2020 and 2021. Unsurprisingly, utilization of public chargers has decreased with the COVID-19 pandemic. The average duration of charging sessions has remained relatively constant, while the number of ports available to the public continued to increase. Level 3 charging sessions in the datasets lasted on average 28 minutes, and level 2 charging sessions lasted on average 2 hours and 44 minutes. There has been a slight increase in energy and power delivered from 2019 to 2021.

The weekly pattern varies greatly depending on where a charging site is located. Sites in rural areas have more charging events during the weekend, starting Friday. In general, level 2 ports are the busiest toward noon and level 3 ports are busiest in late afternoon.

Accessibility, hardware and charging issues occasionally afflict drivers attempting to charge their EVs. Most level 3 chargers are communicating to enable remote diagnostics, but some level 2 chargers are not. Cable management systems are being installed to limit potential of damage to cables and connectors. Excluding external issues such as blocked access, the typical average unavailability of communicating level 3 chargers stated by some interviewed operators is around 1%. The stated average unavailability of communicating level 2 ports is higher, around 8% or 9%. Together, these issues contribute toward the overall satisfaction of EV drivers for public charging, and drivers are more satisfied with level 2 charging than with level 3 charging based on a natural language analysis of comments left by drivers in the ChargeHub mobile app. 

The full report can be obtained at https://www.nrcan.gc.ca/energy-efficiency/transportation-alternative-fuels/resource-library/3489, under the title “Biennial Snapshot of Canada’s Electric Charging Network and Hydrogen Refuelling Stations for Light-duty Vehicles”. Alternatively, you can obtain it at https://chargehub.com/en/industry/nrcan-report.html, or contact me directly. 

NRCan Report: Public EV Charging Infrastructure Gaps

I was the principal author for this just-released primary research report on public EV charging, sponsored by Natural Resource Canada and done in collaboration with Mogile Technologies, editor of the ChargeHub database.

This report identifies three categories in the Canadian electric vehicle (EV) charging infrastructure in which gaps occur: cities, highways, and customer experience. It is based on data in the ChargeHub database, an independent, curated, user-enriched and commercially available database of public EV charging stations in North America, augmented by data from stakeholder interviews and demographic census data and geographic data. 

Generally, cities in British Columbia and Quebec have more public charging ports relative to their population than cities in other provinces, and city EV drivers use them more than drivers outside cities. As for major highways, coverage is at 61%, with most of the gaps in the Prairies. For customer experience, EV drivers consider range anxiety (a vehicle issue: “Will I be able to get where I am going?”) a less serious concern than charging anxiety (an infrastructure issue: “Will I be able to charge at this site?”).

Although the geographic coverage of the EV charging infrastructure is relatively good, the charging capacity is stretched in many areas, resulting in a suboptimal customer experience. Fast charging sites tend to be larger in cities, and Tesla fast charging sites are, on average, four times larger than non-Tesla sites. Meeting the increasing charging needs of EV drivers and promoting adoption of EVs will need to account for existing capacity utilization in the immediate area where new sites are considered, especially at peak driving times such as Fridays before a long weekend. 

Interviewees stated that public charging sites generally have a challenging intrinsic economic case for their operators and site owners, which is constraining expansion. A large portion of charging sites is currently only financially undertaken when subsidized in some way, whether by governments, by utilities, by automakers or by site owners. Business owners likely justify supporting public charging sites based on the possible indirect benefits they may bring, such as attracting drivers and customers or improving public image. In this context, stakeholders see the financial support from NRCan’s infrastructure deployment programs as essential. 

Optimizing future EV charging infrastructure deployment will need to account for not only coverage but also capacity needs. For example, adding ports to an existing site, or adding a new site in the vicinity, may be highly beneficial for EV drivers if there is regular congestion and if the new capacity can be demonstrated to relieve current or upcoming congestion. Furthermore, due to the low levels of satisfaction with customer experience for public charging, we recommend that NRCan make the driver experience a key measure in assessing the performance of the EV charging infrastructure. 

The full report can be obtained at https://www.nrcan.gc.ca/energy-efficiency/transportation-alternative-fuels/resource-library/3489, under the title “Identification of Current and Future Infrastructure Deployment Gaps”, or contact me directly. 

Residential Light-Duty EV V2G

There’s an increasing level of interest in the industry to use the energy stored in EVs to manage demand and supply peaks, drawing on the EV batteries to support the grid, referred to as Vehicle-to-Grid (V2G). In concept, V2G is similar to using stationary batteries in people’s home as a distributed energy resource, a concept that has been growing in interest, with Green Mountain Power being the first utility with tariffed home energy storage programs[i] for customers. However, in some ways, V2G has more potential than stationary batteries, but also more challenges.

With V2G, EVs may be used as distributed grid-resource batteries. Then, a plugged-in EV with a sufficiently charged battery and a bidirectional charger may get a signal to discharge the battery when called upon to support the grid (demand response) or to optimize a customer’s electricity rates (tariff optimization). 

When associated with a home energy management system, V2G may be used as a standby power source during outages, a feature referred to as Vehicle-to-Home (V2H). V2G is also related to Vehicle-to-Load (V2L), where the vehicle acts as a portable generator. Collectively, these functions are often referred to as V2X, although they all have their own characteristics, as described below.

The Case for Residential Light-Duty EV V2G

The case for residential light-duty EVs is compelling because the batteries in modern light-duty EVs are large in comparison to their daily use, being sized for intercity travel (like going to the cottage on the weekend, or an occasional trip to visit friends and family), leaving significant excess capacity for use during peaks. For example, modern long-range EVs have batteries of 60 kWh to 100 kWh, for a range of 400 km (250 mi.) to 600 km (400 mi.) — significantly more than what is required for daily commute by most drivers. This means that light-duty passenger vehicles can leave home after the morning peak with less than a full battery and still come back at the end of the day with a high remaining state of charge for use during the evening peak. 

In terms of capacity, residential V2G compares favorably to home energy storage systems and commercial EV fleets. Indeed, home energy storage systems (like the Tesla Wall, with 13,5 kWh of usable energy[ii]) have far less capacity than modern EVs. As for medium or heavy-duty fleet EVs, they have a high duty cycle, with their batteries size usually optimized for their daily routes, leaving little excess capacity for use by a V2G system during peaks, with some exceptions, such as school buses[iii].

Extracting value from residential light-duty EV V2G can be achieved at the consumer level or at the utility level, but depending on the local regulatory framework and the energy, capacity or ancillary market structure:

  • Consumers may use V2G to leverage utility dynamic rates and net metering tariffs (or other bidirectional tariffs), charging the EV when rates are low and feeding back to the grid when rates are high. Typically, the consumer would own the V2G system. The consumer (or a third-party service company hired by the consumer) controls when the EV is charged and when it is discharged, following rules to ensure that the consumer driving needs and cost objectives are met.
  • A customer’s utility may also control the V2G system to optimize grid supply, charging the EV when wholesale prices are low or when generating capacity is aplenty, and feeding back to the grid when market prices are high or capacity constrained, therefore benefitting all ratepayers. As enticement for the consumers to participate, the utility would need to subsidize the V2G system or to have a recurring payment to the consumer.
  • In some jurisdictions, third-party aggregators may act as an intermediary between consumers and the energy, capacity or ancillary markets. Consumers are compensated by a subsidy, a recurring payment, or a guaranteed rate outcome. 

However, the potential of V2G also depends on automakers. Automakers are announcing V2X features, such as Volkswagen[iv] and Hyundai[v]. Aware of the economic potential of V2G and their gatekeeper position, automakers will want to extract some value from it, especially as V2X would increase the number of charging and discharging cycles of the battery, possibly affecting its service life, the warranty costs and civil liability. Automakers could extract value from V2G a few ways, including with an ordering-time option, a one-time software option, or even as an annual or monthly software fee to enable to a V2G function.[vi] Here again, cooperation among automakers will be important as the V2G interfaces to the grid are being defined; there are some signs that such cooperation is starting to take place, as shown by the common position of the German Vehicle Association, the VDA.[vii]

V2G vs. V2H vs. V2L

V2G should be distinguished from Vehicle-to-Home (V2H) and Vehicle-to-Load (V2L) use cases, as V2H and V2L do not feedback power to the electrical grid to relieve grid constraints or optimize customer rates. 

  • V2H is analogous to using the EV battery as a standby generator for use during a power outage. A V2G vehicle, when coupled with a home energy management system, may also offer V2H. 
  • V2L is like using a portable generator to power tools at a construction site or a home refrigerator during a power outage. V2G vehicles may or may not have plugs for V2L, although this is an increasingly common EV feature. 

V2G and V2H or V2L have different power electronics and standards to meet. V2H and V2L are easier to implement as they do not have to meet grid connection standards, while V2G systems must meet DER interconnection standards. An example is Rule 21 in California which makes compliance with IEEE 2030.5 and SunSpec Common Smart Inverter Profile (CSIP) standard mandatory distributed energy resources.[viii] On the other hand, a V2H or V2L vehicle (or its supply equipment) needs to have a grid-forming inverter, while a V2G inverter acts as a grid-following power source.[ix] [x]

On-Board V2G (AC) vs. Off-Board V2G (DC)

Electrically, V2G (and V2H) may come in two varieties: on-board V2G (AC) and off-board V2G (DC).[xi]

On-Board V2G (AC)

With on-board V2G, the EV exports AC power to the grid, through a home EV supply equipment. For light-duty vehicles, the connector is SAE J1772; SAE J3072 defines the communication requirements with the supply equipment. The supply equipment needs to be bidirectional and to support the appropriate protocol with the vehicle and compatible with the local grid connection standards.

An issue is that the standard Type 1 SAE J1772 plug used in North America is a single-phase plug and does not have a dedicated neutral wire for the split phase 120/240 V service used in homes. This means that the J1772 plug can be used for V2G (feeding back to the grid at 240 V) but can’t be used directly (without an adaptor or a transformer) for split phase 120/240 V V2H. This issue reduces the customer value of the system, as AC V2G can’t readily be used as a standby generator for the home. 

Many EVs come with additional plugs, in addition to J1772, for 120/240 V V2L applications. Examples included the NEMA 5-15 120 V plug (common residential plug) and the twist-lock L14-30 split phase 120/240 V plug (often seen on portable generators). The Hyundai IONIQ 5[xii] and the GMC Hummer EV[xiii] are examples of vehicles with additional plugs. 

As of this writing, commercially available EVs in North America do not support on-board V2G, but some have been modified to test the concept for pilot programs.[xiv] However, many automakers have announced vehicles with bidirectional chargers, and possibly AC V2G, although there are little publicly available specifications. 

Off-Board V2G (DC)

With off-board V2G, the EV exports DC power to a bidirectional DC charger. 

Bidirectional charging has been supported by the CHAdeMO DC fast-charging standard for quite some time, and the Nissan Leaf has offered the feature since 2013[xv]. Several light-duty DC V2G pilots therefore used these vehicles. However, with the new Nissan Ariya electric crossover using CCS instead of CHAdeMO, Nissan effectively made CHAdeMO a legacy standard in North America.[xvi]

CCS is an alternative for off-board V2G, but, unfortunately, CCS does not yet support bidirectional charging. CharIN[xvii], the global association dedicated to CCS, is developing the standards for V2G charging[xviii]. The upcoming ISO 15118-20 is expected for the fourth quarter of 2021 and will include bidirectional charging. This will mark the official start of interoperability testing. However, it will take time to reach mass-market adoption since the new standard needs to be implemented and tested beforehand to overcome potential malfunctions on software and hardware side.[xix] BMW, Ford, Honda, and Volkswagen have all announced plans to incorporate bidirectional charging and energy management, with an implementation target of 2025, but it is not clear if this is for V2G AC or V2G DC.[xx]

A critique of off-board V2G is the high cost of bidirectional DC chargers.[xxi] A solution may be to combine the bidirectional charger with a solar inverter, integrating power electronics for residences with both solar panels and EV charging. The dcbel r16 is an example of such an integrated approach[xxii], combining a Level 2 EV charger, a DC bidirectional EV charger, MPPT solar inverters, a stationary battery charger/inverter and a home energy manager in a package that costs less than those components purchased individually.[xxiii]


[i]        See https://greenmountainpower.com/rebates-programs/home-energy-storage/powerwall/ and https://greenmountainpower.com/wp-content/uploads/2020/11/Battery-Storage-Tariffs-Approval.pdf, accessed 20210526

[ii]       See https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall%202_AC_Datasheet_en_northamerica.pdf, accessed 20211008.

[iii]      While medium and heavy vehicles like trucks and transit buses generally have little excess battery capacity, school buses during summer are an exception, as many remain parked during school holidays. See, for example, https://nuvve.com/buses/, accessed 20211208.

[iv]       See https://www.electrive.com/2021/01/27/vw-calls-for-more-cooperation-for-v2g/, accessed 20211220.

[v]        See https://www.etnews.com/20211101000220 (in Korean), accessed 20211210.

[vi]       For example, Stellantis targets ~€20 billion in incremental annual revenues by 2030 driven by software-enabled vehicles. See https://www.stellantis.com/en/news/press-releases/2021/december/stellantis-targets-20-billion-in-incremental-annual-revenues-by-2030-driven-by-software-enabled-vehicles, accessed 20211207,

[vii]      See https://www.mobilityhouse.com/int_en/magazine/press-releases/vda-v2g-vision.html, accessed 20211210.

[viii]     See https://sunspec.org/2030-5-csip/, accessed 20211006.

[ix]       See https://efiling.energy.ca.gov/getdocument.aspx?tn=236554, on page 9, accessed 20211208.

[x]        “EV V2G-AC and V2G-DC, SAE – ISO – CHAdeMO Comparison for U.S.”, John Halliwell, EPRI, April 22, 2021.

[xi]       See http://www.pr-electronics.nl/en/news/88/on-board-v2g-versus-off-board-v2g-ac-versus-dc/, accessed 20211008, for an in-depth discussion of on-board and off-board V2G.

[xii]      See https://www.hyundai.com/worldwide/en/eco/ioniq5/highlights, accessed 20211006.

[xiii]     See https://media.gmc.com/media/us/en/gmc/home.detail.html/content/Pages/news/us/en/2021/apr/0405-hummer.html, accessed 20211008.

[xiv]     See https://www.energy.ca.gov/sites/default/files/2021-06/CEC-500-2019-027.pdf, accessed 202112108.

[xv]      See https://www.motortrend.com/news/gmc-hummer-ev-pickup-truck-suv-bi-directional-charger/, accessed 20211008.

[xvi]     See https://www.greencarreports.com/news/1128891_nissan-s-move-to-ccs-fast-charging-makes-chademo-a-legacy-standard, accessed 20211008.

[xvii]    See https://www.charin.global, accessed 20211008.

[xviii]   See https://www.charin.global/news/vehicle-to-grid-v2g-charin-bundles-200-companies-that-make-the-energy-system-and-electric-cars-co2-friendlier-and-cheaper/, accessed 20211008.

[xix]     Email received from Ricardo Schumann, Coordination Office, Charging Interface Initiative (CharIN) e.V., 20211015

[xx]      See https://www.motortrend.com/news/gmc-hummer-ev-pickup-truck-suv-bi-directional-charger/, accessed 20211008.

[xxi]     See, for example, https://thedriven.io/2020/10/27/first-vehicle-to-grid-electric-car-charger-goes-on-sale-in-australia/, accessed 20211012.,

[xxii]    See https://www.dcbel.energy/our-products/, accessed 20211012. 

[xxiii]   See https://comparesmarthomeenergy.com, accessed 20211210. 

IEEE Webinar: The Utility Business Case to Support Light Duty EV Charging

I presented this webinar on December 2nd. The link to the recording and the slides is here.

Let me know what you think!

Here Are the 145 Canadian Electric Utilities

February 2nd update: Thanks to some friends, the list has been updated, reducing the number of Canadian utilities from 151 to 145.

In the United States, the Energy Information Agency maintains a handy database of electric utilities. I couldn’t find anything similar for Canada. In my activities as a business consultant in the electricity sector, it’s something useful and I have had many Canadian utilities as customers. So, I made my own over the years and I’m sharing it here. 

You’ll be pleased to know that 145 electric utilities operate in Canada — I included the entire list at the end of this post. Some definitions here: I’m only counting distribution companies. Companies that are energy retailers, transmitters or generators without a distribution operation are omitted from this list. I found the number of customers for most of them, giving a sense of size, although I couldn’t always find this information — mostly Alberta coops and some utilities in the territories. 

58% of Canadian utilities are municipally owned, and 24% more are coops.

However, by customer count, 57% of Canadian customers are served by a provincial or territorial utility. As I couldn’t find the customer counts of many coops, this chart underestimates this category. 

Ontario has the most utilities, followed by Alberta, British Columbia and Québec. Manitoba and Prince Edward Island are the only two provinces with a single utility. 

Hydro-Québec is the largest Canadian utility, with over 4.3 M customers. BC Hydro and Hydro One follow. Alectra is the largest municipal utility. The Fortis companies, if taken together, would have over 1 M customers in BC, AB, ON, PE and NL, but they’re largely operating independently. The top 20 companies have 90% of the Canadian customers — the 20th one, Kitchener-Wilmot Hydro, has almost 100,000 customers.

Let me know if you want to know more!

RankUtility NameCustomersOwnershipProv./Terr.
1Hydro-Québec Distribution4,316,914Prov./Terr.QC
2BC Hydro2,049,322Prov./Terr.BC
3Hydro One Networks Inc.1,395,575Prov./Terr.ON
4Alectra Utilities Corporation1,054,613MunicipalON
5Toronto Hydro-Electric System Limited777,904MunicipalON
6ENMAX Power Corp.674,800MunicipalAB
7Manitoba Hydro586,795Prov./Terr.MB
8FortisAlberta Inc.563,000Inv. OwnedAB
9SaskPower537,714Prov./Terr.SK
10Nova Scotia Power Incorporated520,000Inv. OwnedNS
11NB Power405,466Prov./Terr.NB
12EPCOR Distribution Inc.369,000MunicipalAB
13Hydro Ottawa Limited339,771MunicipalON
14Newfoundland Power269,000Inv. OwnedNF
15ATCO Electric Ltd.227,000Inv. OwnedAB
16FortisBC175,900Inv. OwnedBC
17Elexicon Energy Inc.167,653MunicipalON
18London Hydro Inc.160,598MunicipalON
19Saskatoon Light & Power117,200MunicipalSK
20Kitchener-Wilmot Hydro Inc.97,695MunicipalON
21ENWIN Utilities Ltd.89,561MunicipalON
22Hydro-Sherbrooke82,697MunicipalQC
23Maritime Power80600Inv. OwnedPE
24Oakville Hydro Electricity Distribution Inc.73,133MunicipalON
25Burlington Hydro Inc.68,205MunicipalON
26Energy+ Inc.66,521MunicipalON
27Entegrus Powerlines Inc.59,810MunicipalON
28Oshawa PUC Networks Inc.59,183MunicipalON
29Waterloo North Hydro Inc.57,855MunicipalON
30Synergy North Corporation56,700MunicipalON
31Niagara Peninsula Energy Inc.56,067MunicipalON
32Greater Sudbury Hydro Inc.47,725MunicipalON
33Newmarket-Tay Power Distribution Ltd.43,931MunicipalON
34Milton Hydro Distribution Inc.40,388MunicipalON
35Brantford Power Inc.40,124MunicipalON
36Newfoundland & Labrador Hydro38,000Prov./Terr.NF
37Bluewater Power Distribution Corporation36,743MunicipalON
38Saint John Energy36,500MunicipalNB
39PUC Distribution Inc.33,647MunicipalON
40City of New Westminster31,000MunicipalBC
41Essex Powerlines Corporation30,393MunicipalON
42City of Medicine Hat Electric30,200MunicipalAB
43Canadian Niagara Power Inc.29,455Inv. OwnedON
44Kingston Hydro Corporation27,778MunicipalON
45North Bay Hydro Distribution Limited24,199MunicipalON
46Westario Power Inc.23,774MunicipalON
47Welland Hydro-Electric System Corp.23,664MunicipalON
48ERTH Power Corporation23,380MunicipalON
49Halton Hills Hydro Inc.22,528MunicipalON
50Festival Hydro Inc.21,382MunicipalON
51Hydro-Jonquière20,289MunicipalQC
52Innpower Corporation18,632MunicipalON
53EPCOR Electricity Distribution Ontario Inc.17,916Inv. OwnedON
54Swift Current Electricity Services16,600MunicipalSK
55Wasaga Distribution Inc.14,003MunicipalON
56Lakeland Power Distribution Ltd.13,762MunicipalON
57Orangeville Hydro Limited12,652MunicipalON
58E.L.K. Energy Inc.12,478Inv. OwnedON
59Algoma Power Inc.11,732Inv. OwnedON
60Grimsby Power Incorporated11,631MunicipalON
61Ottawa River Power Corporation11,320MunicipalON
62Lakefront Utilities Inc.10,546MunicipalON
63Hydro Westmount10,181MunicipalQC
64Hydro-Magog9,957MunicipalQC
65Niagara-on-the-Lake Hydro Inc.9,558MunicipalON
66Hydro-Joliette8,975MunicipalQC
67Centre Wellington Hydro Ltd.7,156MunicipalON
68Tillsonburg Hydro Inc.7,129MunicipalON
69Coopérative SJBR6,400CooperativeQC
70Northern Ontario Wires Inc.5,977MunicipalON
71Rideau St. Lawrence Distribution Inc.5,910MunicipalON
72Edmundston Energy5,800MunicipalNB
73Hydro Hawkesbury Inc.5,549MunicipalON
74Ville d’Alma5,482MunicipalQC
75Ville de Baie-Comeau4,928MunicipalQC
76Nelson Hydro4,434MunicipalBC
77Renfrew Hydro Inc.4,325MunicipalON
78Hydro-Coaticook3,968MunicipalQC
79Wellington North Power Inc.3,830MunicipalON
80Fort Frances Power Corporation3,773MunicipalON
81Antigonish Electric Utility3,500MunicipalNS
82Espanola Regional Hydro Distribution Corporation3,309Inv. OwnedON
83Ville d’Amos2,882MunicipalQC
84Sioux Lookout Hydro Inc.2,848MunicipalON
85Hearst Power Distribution Company Limited2,700MunicipalON
86Cooperative Hydro Embrun Inc.2,366CooperativeON
87Atikokan Hydro Inc.1,629MunicipalON
88Corix Multi Utility Services Inc. 1,365Inv. OwnedBC
89Hydro 2000 Inc.1,244MunicipalON
90Chapleau Public Utilities Corporation1,222MunicipalON
91Perth Andover Light Commission1,000MunicipalNB
92Hemlock Utility Services Ltd.252Inv. OwnedBC
93The Yukon Electrical Company Limited 80Inv. OwnedBC
94Kyuquot Power Ltd.42Inv. OwnedBC
95Silversmith Light & Power Corporation9Inv. OwnedBC
96Armena REA Ltd. CooperativeAB
97Battle River Power Coop CooperativeAB
98Beaver REA Ltd. CooperativeAB
99Blue Mountain Power CooperativeAB
100Borradaile REA Ltd. CooperativeAB
101Braes REA Ltd. CooperativeAB
102City of LethbridgeMunicipalAB
103City of Red Deer Electric Light & PowerMunicipalAB
104Claysmore REA Ltd. CooperativeAB
105Co-op (Rocky REA Ltd) CooperativeAB
106Devonia REA Ltd. CooperativeAB
107Drayton Valley REA Ltd. CooperativeAB
108Duffield REA Ltd CooperativeAB
109EQUS REA Ltd. CooperativeAB
110Ermineskin REA Ltd. CooperativeAB
111Fenn REA Ltd. CooperativeAB
112Heart River REA Ltd. CooperativeAB
113Kneehill REA Ltd. CooperativeAB
114Lakeland REA Ltd. CooperativeAB
115Lindale REA Ltd. CooperativeAB
116MacKenzie REA Ltd. CooperativeAB
117Mayerthorpe & District REA Ltd. CooperativeAB
118Montana REA Ltd. CooperativeAB
119Municipality of Crowsnest PassMunicipalAB
120Myrnam REA Ltd. CooperativeAB
121Niton REA Ltd. CooperativeAB
122North Parkland Power REA Ltd. CooperativeAB
123Peigan Indian REA Ltd. CooperativeAB
124Sterling REA Ltd. CooperativeAB
125Stony Plain REA Ltd. CooperativeAB
126Tomahawk REA Ltd CooperativeAB
127Town of Cardston MunicipalAB
128Town of Fort Macleod MunicipalAB
129Town of Ponoka MunicipalAB
130West Liberty REA Ltd CooperativeAB
131West Wetaskiwin REA Ltd. CooperativeAB
132Wild Rose REA Ltd. CooperativeAB
133Willingdon REA Ltd. CooperativeAB
134Zawale REA Ltd. CooperativeAB
135City of Grand ForksMunicipalBC
136City of PentictonMunicipalBC
137District of SummerlandMunicipalBC
138Berwick Electric Light CommissionMunicipalNS
139Canso Electric Light CommissionMunicipalNS
140Lunenburg Electric UtilityMunicipalNS
141Mahone Bay Electric UtilityMunicipalNS
142Riverport Electric Light CommissionMunicipalNS
143Northland UtilitiesInv. OwnedNT
144Qulliq EnergyProv./Terr.NU
145Yukon Electrical CompanyInv. OwnedYK
146Yukon Energy CorporationProv./Terr.YK

Book Review: “Branchée: Hydro-Québec et le futur de l’électricité” (French version; in English : “Charging Ahead: Hydro-Québec and the Future of Electricity”)

Jean-Benoit Nadeau and Julie Barlow have published this worthwhile book on Hydro-Québec. I have recently read the French version, and the English translationwill be available on October 15, 2019. I would highly recommend this book to people who need to understand what is driving Hydro-Québec. Electrical system vendors and other industry stakeholders will certainly appreciate the perspective that Branchée/Charging Aheadbrings. However, the authors largely (but not exclusively) rely on internal Hydro-Québec sources and sometimes come across as overly praising the company. Other, more critical, sources might be needed to grasp the complexities of the energy sector in Québec. 

Overall, Branchée/Charging Ahead is a very well-documented book on Hydro-Québec and current strategic directions. Fifty-three people were interviewed, including a large number of Hydro-Québec personnel, up to the CEO, Éric Martel. The book also draws on multiple third-party references and previous article published by the authors. 

Branchée/Charging Aheadstarts with a history of Hydro-Québec. The history of Hydro-Québec innovations is highlighted, with the 735 kV transmission lines being described as “Hydro-Québec’s great technical prowess”[i]. However, this technology dates back to the 1960s’. While there has been nothing remotely comparable since then, the book lists other examples of Hydro-Québec innovations, such as the LineRanger robot, Li-Ion batteries and TM4 electric motors. The book rightfully says that the “commercialization of inventions is an old fantasy of Hydro-Québec. For 30 years, all CEOs have talked about their amazing potential. But their promises have always disappointed.”[ii]TM4 is a good example given in the book: TM4 used up $500 million over 20 years, but Hydro-Québec sold 55% of it to Dana for only $260 million.[iii]

The book contains many noteworthy and hard-to-find current facts and numbers that industry professional might find valuable, such as:

  • As of early 2019, there are 716 prosumers (distributed generators) on Hydro-Québec’s network.[iv]
  • By controlling just 4 baseboard smart thermostats, Hydro-Québec can reduce the peak load of a typical household by 1 kW; Ten smart thermostats lead to a 2 kW saving.[v]
  • Hydro-Québec is running a smart home pilot project with 400 households, intending to launch a new smart home product through an unnamed subsidiary; Sowee, from Électricité de France, is given as a comparable.[vi]

The authors do not attempt to explain their paradox of innovation promises to have always failed Hydro-Québec and Hydro-Québec continuing to heavily invest in innovation. 

Toward the end, Branchée/Charging Ahead provides many insights into the thinking of Hydro-Québec senior managers, including where they see the industry going, how it is going to affect Hydro-Québec, what strategic imperatives ensue, and what Hydro-Québec needs to do. Undoubtedly, vendors could find in here material to enrich proposals and presentations. 

I found very few instances of questionable facts in the book. The Philadelphia Navy Yard microgrid is given as an example[vii], but this project has now been abandoned and is being reborn on a much smaller scale. Economically, I also disagree with the statement that Hydro-Québec is well positioned to develop hydrogen production[viii]– there is far more value in using dispatchable hydro to balance renewable resources than to produce hydrogen from electricity (which is a highly inefficient process). 

Furthermore, I believe that many customers, outside industry expert, vendors or other utilities might object to some praising characterization of Hydro-Québec, such as when the authors state that Hydro-Québec “is one of the best managed electricity grids on the continent and is admired by the largest companies in the industry”[ix]or that it has one of the most reliable grids on the continent[x]. The book would have been more balanced by giving a greater voice to those external stakeholders. Also, given the generally positive perspective that the authors are offering, Branchée/Charging Aheadwill certainly support Hydro-Québec when it tries to gather support for Bill 34[xi].  

All this being said, I greatly enjoyed reading the book and I highly recommend it to anyone wanting to better understand this fascinating company. However, I would caution against drawing conclusions or designing policies based solely on Branchée/Charging Aheadwithout balancing some of the ideas with more independent sources.   


[i]                Chapter 2. Quotes from the book are translated from the French edition. 

[ii]               Chapter 10.

[iii]              Chapter 10.

[iv]               In the introduction and later in chapters 4, 5 and 6.

[v]                Chapter 6.

[vi]               Chapter 6.

[vii]              Chapter 6.

[viii]             Chapter 6

[ix]               In the introduction.

[x]                Chapter 1.

[xi]               See http://benoit.marcoux.ca/blog/bill-34-selling-to-hydro-quebec/for my take on Bill 34. 

How Bill 34 Will Affect Vendors Selling to Hydro-Québec

The Government of Québec has tabled Bill 34[1]that simplify the rate-setting process for Hydro-Québec Distribution.[2]Essentially, most distribution rates are frozen for 2020, and then adjusted for inflation until 2025, when a rate review would occur. Additionally, the bill requires Hydro-Québec to reimburse to customers of some $500 million before 1 April 2020.[3]It should be noted that Hydro-Québec currently has the lowest residential rates in North America.[4]

This Bill is a significant change from the traditional rate base rate-of-return regulation that previously subjected Hydro-Québec to yearly rate filing. Based on my personal marketing experience in the electricity industry, this post outlines my views of how Bill 34 may change some of Hydro-Québec business drivers when dealing with its vendors, presumably leading Hydro-Québec to faster decision-making in purchasing, smarter assessment of costs, and a greater appetite for innovative solutions.

Before: Traditional Rate Base Rate-of-Return Regulation

The electricity distribution business is a natural monopoly. This means that it is in the interest of society to have just one distribution utility in a given territory. It is easy to understand the rationale: you would not want to have multiple sets of poles along roads; one set is more than enough. However, left to itself, a distribution utility with a monopoly could charge unreasonable rates for use of its bottleneck facility.[5]

In most of Canada and the United States, electric utilities are regulated using a traditional rate base rate-of-return regulation regime. Under this regime, the sum of all regulated costs – essentially operating expenses, depreciation on assets (resulting from past capital expenditures), interests on debt, taxes, as well as an allowed shareholder returns on investments (i.e. a reasonable profit) – are recovered from customers. This is called revenue requirement or required revenues. Required revenues are allocated across the customer base in a variety of ways, primarily on the basis of the energy distributed (cents per kilowatt-hour, ¢/kWh), as well as peak load (dollars per kilowatt, $/kW) for some commercial and industrial customers. In practice, different classes of customers get different rates, but revenues projected during a regulatory rate case have to be equal to revenue requirements. If there is a significant variance between the projected revenues and the actual revenues in a year, adjustments are normally made in subsequent years.[6]

Obviously, regulated utilities are not allowed to spend anyway they want: they have to prove to their provincial regulator – the Régie de l’énergie in Québec, the Alberta Energy Board, the Ontario Energy Board, etc. – that their costs (both operating expenses and capital expenditures) are necessary and prudent. These arguments are aired during public rate cases – yearly in the case of Hydro-Québec, up to now – during which various interveners, typically representing customer groups, submits reports and ask questions. The process can be slow, adversarial and excruciating as all details of operations are looked at and need to be justified – the regulator often does not trust the utility and even activities and investments that a utility may present as essential may not be approved. 

Rate-of-return regulation of utility monopolies has served relatively well as a market substitute for a century, but it has its drawbacks. I’ll retain three issues for discussion here: slow innovation, poor service quality, and uneconomic decisions.

Innovation tends to be among the casualties of rate-of-return regulations: the slow regulatory cycle, the public scrutiny and the second-guessing by interveners makes utilities extremely risk-averse and slow to integrate new technologies. For example, as part of rate cases, utilities sometimes specify models of power equipment, which become the standard products used in the network. Because another complex homologation process would get in the way, product selection may not be revised for many years, even decades, often until the vendor cease production. However, over time, utilities often end up customizing those products, based on experience or new needs, rather than seeking newer products. 

Rate-of-return regulation is an economic form of regulation that does not properly account for service quality. It is difficult to integrate service quality metrics in this regulatory framework and offering varying levels of service quality depending on willingness to pay is not practical. Not surprisingly, electric utilities tend to have negative Net Promoter Scores (NPS), a loyalty measure, with generally far more detractors than promoters among customers.[7]

Since their revenues are practically known in advance following rate setting, regulated utilities look at their business upside-down in comparison to companies operating in a competitive, free market:

  • Shareholders earn a return on all utility assets – the more, the better. New investments mean a larger asset base, on which the shareholders are allowed to claim a return, meaning that net income will also be higher. There is a strong incentive for utilities to buy more equipment or to gold-plate it, although interveners may oppose, and regulators may not agree. 
  • Regulated utilities effectively pass operating expenses to their customers. Indeed, lowering (or increasing) operating expenses simply lowers (or increases) required revenues, but net income remains unaffected. Yet, the regulatory process tends to compress controllable operating expenses (like customer service or maintenance) in expectation of raising efficiency by the utility. Utilities may actually go along, shareholders preferring to compress operating expenses than investments in assets. 

For vendors, traditional rate base rate-of-return regulations mean that making normal sales arguments often does not make sense in a utility world: 

What vendors may sayWhat utility people may think
“You would be the first in the industry to implement this new technology.”“…And go through hell trying to get it approved.”
“You’ll save on capital expenditures with this new equipment.”“Why would we do this? Shareholders want to justify more capital expenditures, not less.”
“You’ll be making more profit by adopting my cost-saving solution.”“No, we’ll have to pass on the savings to customers at the next rate case and not make more profit.”

Surprisingly, it seems that few vendors understand this traditional utility buying logic, although it is very much the normal case across Canada and the United States. However, Bill 34 is changing all this in Québec.

What Is Bill 34 Changing?

Bill 34 freezes most distribution rates for 2020, followed by yearly adjustments for inflation until 2025, when a rate review would occur. Therefore, Hydro-Québec would no longer have to file rate applications, with detailed costs justifications, every year. Under the Bill, Hydro-Québec is not required to obtain authorization for its infrastructure investment projects and changes to the electricity distribution network. Similarly, commercial programs do not need approval. In contrast to traditional regulation, Bill 34 effectively disconnects costs and revenues for 5 years and should introduce more common business decision-making. 

Bill 34 also stops the Régie efforts to move to a Performance-Based Regulation (PBR). PBR is increasingly popular to regulate utilities[8]. In Canada, Alberta has adopted PBR.[9]Another good example is Great Britain, with its RIIO (Revenue = Incentives + Innovation + Outputs) framework.[10]PBR generally aims to balance multiple variables, such as quality of service and costs, while freeing utilities to innovate. Without presuming of the rationale behind Bill 34, it may be that the very low costs of electricity in Québec in comparison to the jurisdictions where PBR was implemented, as well as Hydro-Québec’s renewable generation fleet, present a simpler approach toward the same objectives. 

After: Faster, Risk-Taking and Innovative?

Hydro-Québec remains a natural monopoly, without direct competitive pressure. However, with Bill 34, decision-making should become much closer to that of “ordinary” commercial business, with a new-found flexibility and a greater drive toward efficiency and business innovations. Hydro-Québec will be incentivized to reduce costs to increase net income, as revenues will be stable (after inflation). In particular, the new framework removes the bias toward capital expenditures and rewards a smarter control of operating expenses. For instance, with greater flexibility, Hydro-Québec might increase maintenance and extend life of some power equipment at the same time that it might replace other assets with advanced systems – all in the name of efficiency.

All this may change how Hydro-Québec will interact with equipment and service vendors, although any change to purchasing decision-making will undoubtedly depend on management decisions and may be slowed by the natural inertia of the company. 

Nevertheless, Hydro-Québec may become more open to acquire new products and services from new vendors, with a corresponding risk for established vendors. High-end or customized (and therefore more expensive) products from established vendors may be especially at risk of substitution by less expensive or industry-standard ones. In some cases, the number of vendors supplying a type of product dwindled to just one over the years; it now may be that Hydro-Québec will seek to split contracts with a competitor to try to bring down costs on commodity products. On the other end, like common in other industries, Hydro-Québec may also seek broad strategic partnerships for more complex products, with favorable contract terms for Hydro-Québec in exchange for a vendor exclusivity in some product categories. 

With the greater flexibility brought by Bill 34, Hydro-Québec may also become more inclined to try out innovative products or systems in its distribution network, and we could see faster decisions to deploy those innovations. This might come at an opportune time, as other utilities introduced new grid technologies in order to support distributed generation (especially solar) at a very large scale[11]; Hydro-Québec could learn from the vendors involved in these deployments.

Similarly, Bill 34 might enable Hydro-Québec to accelerate the launch of new products or services to its customers, possibly in collaboration with external vendors. Hydro-Québec has been innovative in researching new uses for electricity and energy efficiency system, going as far as building houses to test smart home technologies.[12]Hydro-Québec publicly expressed interest in how smart home, solar generation, energy storage and microgrids could impact its network.[13]Other utilities have already introduced services and products to their customers around these concepts, like BC Hydro (CaSA smart thermostats)[14], Green Mountain Power (Tesla batteries and FLO smart electric vehicle chargers)[15], Hydro Ottawa (Google smart assistant),[16]and many more; it would not be surprising to see Hydro-Québec following suit. 

What May Not Change

While Bill 34 will change many things, some important practices should remain. For example, Hydro-Québec is extremely serious about cybersecurity[17]; vendors should still expect to have to meet stringent cybersecurity requirements, for good reasons. As a Québec crown corporation, Hydro-Québec also remains subjected to normal government buying policies, like requiring bids beyond certain amounts and strict rules when dealing with vendors[18]– this too will remain. 

Contrary to performance-based regulatory regimes like RIIO in Great Britain (see above), Bill 34 does not provide explicit incentives to improve the reliability of the electricity service. While this is not a change from the current regulatory regime, it should be noted that the reliability of Hydro-Québec electricity services has been degrading over the last years.[19]However, repairing the network after an outage does cost money, and some vendors could highlight how their solution prevent outages or reduce the cost of repairs. Furthermore, Hydro-Québec management could conclude that maintaining sufficient reliability is essential to avoid a decision to return to traditional regulation in 2025. 

Also, Bill 34 specifically maintains Hydro-Québec’s obligation to file an annual report. Those reports include a wealth of information on the organization, the performance and the financial situation of Hydro-Québec.[20]

Finally, utilities, including Hydro-Québec, publish public performance indicators.[21]Usually, those indicators are also used in management incentive plans. Showing the impact of a solution on performance indicators will remain a sound sales tactics when selling to utilities. 

Closing Words

Once Québec’s national assembly adopts Bill 34, probably in the Fall, it will certainly become an experiment that will be carefully watched by Canadian regulators. Leveraging the low costs of renewable electricity in Québec, it may encourage greater efficiency and business performance by Hydro-Québec, without the complexity of a performance-based regulatory regimes. 

For vendors, the Bill may also fundamentally change how Hydro-Québec should be approached, with potentially a much greater attention to total costs and partnerships than before. 

Do not hesitate to contact me to discuss further. 

Benoit Marcoux, benoit@marcoux.ca, +1 514-953-7469.


[1]               See “An Act to simplify the process for establishing electricity distribution rates”,  http://www.assnat.qc.ca/en/travaux-parlementaires/assemblee-nationale/42-1/journal-debats/20190612so/projet-loi-presentes.html, accessed 20190614.

[2]               Bill 34 only affects the distribution division of Hydro-Québec. The transmission (TransÉnergie) and generation (Production) divisions are not affected. 

[3]               See http://news.hydroquebec.com/en/press-releases/1510/electricity-rates-adoption-of-a-simplified-approach-that-will-guarantee-low-rates/, accessed 20190620. 

[4]               See http://www.hydroquebec.com/residential/customer-space/rates/comparison-electricity-prices.html, accessed 20190615.

[5]               Note that the natural monopoly does not extend to energy retail and generation. In many jurisdictions, notably in most of Alberta, Texas and Europe, there are many energy retailers buying electricity from generators and offering various plans to customers. However, this energy is supplied through electricity distributors that have the poles and conductors up to customers’ homes. In Canada, provinces other than Alberta and Ontario have only vertically integrated distributors and retailers, i.e., the distributor is also the only retailer of electricity. 

[6]               To some extent, Bill 34 is the result of lack of adjustments from over-earning in previous years, as the provincial government, owners of Hydro-Québec, kept these surpluses. This resulted in a delicate political situation, as many people saw this as a disguised tax.

[7]               See CEA Opinion Research, 2014 National Public Attitudes for NPS of Canadian utilities, and https://en.m.wikipedia.org/wiki/Net_Promoter, accessed 20190615, for an overview of the concept. 

[8]               See http://go.woodmac.com/webmail/131501/471713673/8ec22b38df7f81ef4f8278af14095e1bb711214dffd0ee90dc9a250ab8bb5970, accessed 20290619, for an overview of PBR adoption in the United States.

[9]               See http://www.auc.ab.ca/pages/distribution-rates.aspx, accessed 20190615.

[10]             See https://www.ofgem.gov.uk/network-regulation-riio-model, accessed 20190615.

[11]             For example, there are 840,878 residential solar projects in California (https://www.californiadgstats.ca.gov/charts/, accessed 20190617) but only about 700 in Québec (see https://www.lapresse.ca/affaires/economie/energie-et-ressources/201903/22/01-5219334-mini-boom-de-production-denergie-solaire-au-quebec.php, in French, accessed 20190617). Integrating a large number of distributed generators in a distribution network is challenging, and utilities in some other jurisdictions had to innovate to make it work.

[12]             See https://ici.radio-canada.ca/nouvelle/1016006/hydro-quebec-maisons-futur-shawinigan-energie-solaire-thermostats(in French), accessed 20190617.

[13]             See http://plus.lapresse.ca/screens/f2ad982b-9fda-469f-a3f2-86116ab0a46a__7C___0.html(in French), accessed 20190617.

[14]             See https://www.bchydro.com/powersmart/energy-management-trials/casa-thermostat-trial.html, accessed 20190617. 

[15]             See https://greenmountainpower.com/products-all/, accessed 20190617.

[16]             See https://hydroottawa.com/save-energy/innovation/smart-audio, accessed 20190617. 

[17]             For example, Hydro-Québec is funding an industrial research chair in smart grid security at Concordia University – see  http://www.nserc-crsng.gc.ca/Chairholders-TitulairesDeChaire/Chairholder-Titulaire_eng.asp?pid=981, accessed 20190617.

[18]             See https://www.hydroquebec.com/suppliers/becoming-supplier/safe-ethical-and-responsible-procurement.html, accessed 20190618.

[19]             The average number of minutes of outages per Hydro-Québec customer, excluding major events like storms, has been steadily increasing, from 126 minutes in 2013 to 181 in 2018. See http://www.regie-energie.qc.ca/audiences/RappHQD2013/HQD-09-02-Indicateursdeperformance.pdfand http://publicsde.regie-energie.qc.ca/projets/501/DocPrj/R-9001-2018-B-0060-RapAnnuel-Piece-2019_04_18.pdf, respectively for 2013 and 2018, in French, accessed 20190617. 

[20]             See http://www.regie-energie.qc.ca/audiences/RapportsAnnuels_DistribTransp.html, accessed 20190615, for past annual reports in French.  

[21]             See http://publicsde.regie-energie.qc.ca/projets/501/DocPrj/R-9001-2018-B-0060-RapAnnuel-Piece-2019_04_18.pdffor Hydro-Québec’s 2018 performance indicators, in French, accessed 20190618. 

A Trojan Horse: Time-Varying Rates

A majority of Canadian households and small businesses are in provinces where time-varying rates or peak pricing or rebates are available or proposed, thanks to smart meters installed over the last few years. Tariffs for large business already include a demand charge that makes up a big chunk of their bills, inciting them to have a constant power draw. Many businesses also have critical peak pricing or rebates. Therefore, most of the electricity in Canada is sold to people having financial incentives to not only be energy efficient (i.e., consume fewer kWh overall), but to manage when electric power is drawn from their utility. However, with the possible exception of large electricity users, most customers simply do not want (or can’t) manage the minutia of consuming electricity on an hourly or daily basis. This is to be expected, as it’s a lot of work and inconvenience for little pay: running the dishwater off-peak rather than on-peak may save a dime, but it means noise when people are trying to sleep and emptying it during the morning rush to school or work. Although all the saved dimes may add up to significant dollars at the end of a year, human nature makes us lazy, and we just go on whining about high hydro cost instead.

In aggregate, everybody’s dimes also add up to a lot of money for the society. For most people and businesses, electricity is not something to get passionate about. It is a significant – but not the largest – component in the budget. We mostly notice electricity when it is not there, as we can’t do much without it. Most people don’t know or care how electricity get to them, as long as they can benefit from it and that its rates appear to be fair. The significant yet stealthy nature of electricity makes it the perfect commodity. Electrons have no brand, no color, no flavor. It becomes easy to rationalize outsourcing the management of electricity to a third party if it reduces cost and make our lifes easier.

Time-varying rates and peak pricing or rebates thus create the financial incentives for new energy services to emerge and help individual customers save money – they are a Trojan horse inside the utility castle. Essentially, energy service companies are introducing themselves in the value chain – it’s a form of value-added intermediation, although energy service companies are not allowed to resell in most provinces. In addition to rate arbitrage, the business model of energy service companies leverages the dropping cost of rooftop solar power and energy storage, supported by mass-market smart home devices (for residences) or off-the-shelf building management systems (for businesses) connected over the Internet. Lower electricity costs with cool gadgets and better comfort. Voilà! A competitor is born.

Energy service companies are offering what amounts to a partial substitute for electric utility services. Rooftop solar panels, batteries, smart home thermostats, water heaters and lighting, building management systems, EV chargers, thermal storage and other technologies marketed by energy services companies, engineering firms and solar developersdo not replace mains electricity. However, energy service companies provide financing and remove the complexity of managing electricity rates and provide other benefits such as comfort or backup during outages. In the process, energy service companies capture a decent chunk of the electricity value stream as they turn electricity service into even more of a commodity service. Less energy (kWh) gets delivered by utilities, pushing rates up for all, although few customers will actually go off the grid.

Storms on the horizon. Ouch. That’s competition, and it is new for many in electricity utilities.

Energy service companies are not directly competing with utilities – not like, say, Bell or Telus competing with Rogers or Vidéotron – but it is competition nevertheless – a bit like Bell being in a strange love-hate relationship with Google. In fact, customers must buy still their electricity from their local utility in most provinces[i]. If energy service companies are not direct competition, it has almost the same effect: skimming profitable segments.

Canadian generation, transmission and distribution utilities are affected at different levels and in varying ways, depending on provincial regulations and on their position along the electricity value chain.

One issue is that the tariffs structure for electricity generators and for T&D networks poorly reflects the underlying system cost structure. If rates along the electricity value chain were perfectly set, then utilities should not care if customers shift their energy consumption – after all, that’s the objective of time-varying rates and demand charges. In practice, rates are far from perfectly matching costs. For example, demand charges for small business accounts are typically set for a year or two based on the peak power demand (in kVA) in a past month. This rate structure is essentially a leftover from electromechanical meters where a meter reader would come to a business every month to read energy (kWh) and power (kVA), and then reset the power register on the meter with an actual physical key – the power register would ratchet up until the next read, when they would be reset again. That’s as good as it could be with electromechanical meters, but the maximum demand that was registered didn’t likely coincide with the peak demand on the system. The resultant tariffs structure incites business customers to minimize monthly maximum demand (and, hence, demand charges), but still allow them to draw a lot of power during a system peak, although energy management systems could have reduced demand during the peak and shift it to a different time. Working on behalf of their customers, energy service companies may end up optimizing customer demand around prevailing tariffs to minimize customer charges but may increase overall system costs in the process.

Upstream in the value chain, traditional generators and independent power producers are affected by energy efficiency and demand management initiatives that can potentially reduce energy and power demand of customers. The effects vary depending on the market structure in each province. Contracted generators are less exposed; in Ontario, the “global adjustment” mechanism compensates large generators, while Alberta has a capacity market. However, spot generators may face large variations in prices. Overall, generators are at risk of having stranded assets as energy efficiency improves in the economy and as customers contract with energy service providers to better manage power demand.

Many distribution-only utilities in Canada are partially shielded[ii]. They charge their customers a energy and power rates set by the province and a separate distribution charge that is intended to pay for the costs of their stations and network. The energy and power generation charges are pass-through, and transmitters and generators bear any issues. The distribution charge is often allocated on a per-kWh basis, plus a fixed monthly charge. Because of the per-kWh allocation of their costs, local distributors are somewhat exposed to the vagaries of energy service companies. However, the distributors have more operating costs and lower capital costs than transmitters and generators, meaning that a per-kWh distribution charge is not as far off the mark.

Mid-size municipal utilities also face a different reality than large integrated provincial utilities. Owned by the city, they are accountable local actors, close to their customers (or constituents), using their agility to respond to issues in a way that is just not happening with large integrated utilities. Municipal utilities become instruments of the local mayor and city council, like water, sewers, snow removal and other municipal services. Mayors’ challenges are about their constituents getting sick, having clean water, being warm or cool, holding productive jobs, commuting efficiently, surviving disasters. They see that the local utility supports the needs of a smart city, to be both resilient to face increasing disasters and be sustainable to reduce its environmental impact and to improve quality of life – while being financially affordable. In this context, working with third parties, like energy service companies, just becomes another means to satisfy the needs of citizens and local businesses[iii].

Large vertically integrated provincial utilities face more complex challenges than municipal utilities: the impact of energy service companies on generation can be significant, the feedback loop from constituents to the government and the utility is more tenuous, the customer base has more varied needs, and the integrated utility has a large impact on the finances of the province. Not surprisingly, they tend to prefer to maintain a greater control over the relationship with customers. Whether they can maintain control and reduce choice without antagonizing customers is uncertain, especially when consumers get used to energy service alternatives ranging from large telecom companies to Google and Amazon.

 

[i]       The exceptions are Alberta, the most deregulated market in Canada, and Ontario, although wholesale and retail rates in Ontario are such that about95% of Ontarians choose to buy electricity from their local utility. See https://business.directenergy.com/what-is-deregulation#deregmarketand https://www.oeb.ca/about-us/mission-and-mandate/ontarios-energy-sector, retrieved 20181023.

[ii]      However, municipal utilities in Québec pay large business rates, with demand charges.

[iii]     And, perhaps, in the process, help the mayor get re-elected.

A Perspective on Canada’s Electricity Industry in 2030

I wrote this piece with my friend Denis Chartrand as a companion document for my CEA presentation back in February 2018 (See http://benoit.marcoux.ca/blog/cea-tigers-den-workshop/) but I now realize that I never published it. So, here it is!

Canada Electricity Industry 2030 20180221

Customers of Electric Utilities Are Redefining Quality

Traditional utility wisdom in Canada is that customers are satisfied with the current level of reliability and that improving reliability would only increase costs and push rates up.

The new reality of electric utilities upends this traditional wisdom.

Customers are redefining what is meant by quality. Traditionally, Canadian Utilities used duration of interruptions per year, or SAIDI[i], as their main measure of reliability. Some utilities report the frequency of interruptions per year, SAIFI, as well. A limitation of SAIDI and SAIFI is that interruptions of less than a minute are not included, presumably under the assumption that customers do not care that much about short interruptions. This might have been true in the analog world of years past, but it is not anymore, with even a short interruption resetting our electronic devices. Furthermore, with the fuse saving protection strategy that most Canadian Utilities have adopted on their distribution feeders, short interruptions happen more frequently than longer ones, and are therefore noticed more.

Even a short interruption resets common electronics, like my microwave oven above. This gave birth to the “blinking clock” syndrome, a stark reminder to residential customers that an outage occurred and that their utility has failed them – again. (Photo by the author)

ENMAX, when justifying its distribution automation projects within the performance-based regulation scheme of Alberta, based its analysis on the cost of sustained and momentary service interruptions, with the values for its various customer classes as shown in the table below.[ii]

Table: Estimated ENMAX Customer Class Interruption Costs

Duration Residential Commercial Industrial Weighted Average
30 Minutes

 

$3.02 $992 $3,641 $92.77
Momentary
(% vs. 30-Min.)
$2.71 (90%) $757 (76%) $2,354(65%) $69.12(75%)
Customer mix 92.2% 7.3% 0.5% 100%

The table is interesting for two reasons:

  • On average, the costs to customers of a momentary interruption is 75% that of the cost of a 30-minute interruption, but up to 90% for residential customers. The very small difference in cost between a momentary outage and a 30-minute outage explains why outage frequency is a higher concern than length of outages for residential customers.[iii]Due to the prevalence of the fuse saving protection strategy on electrical distribution feeders in Canada,[iv]there are far more momentary service interruptions than sustained ones – momentary interruptions therefore become the primary concern of customers.
  • The bulk of the economic cost of service interruptions is borne by commercial and industrial customers. While residential customers are far more numerous, the cost per interruption is low. However, residential customers can be more vocal in their complaints in social and traditional media.

This situation is likely to get worse with widespread customer-owned distributed energy resources: owners of distributed energy resources actually lose money during power disturbance. Distributed generators or resources may be thrown offline often for minutes, for safety reasons and to protect the equipment. This results in loss revenue for owners of distributed generators selling back to the grid, or additional costs for those who were offsetting power otherwise purchased from the grid. Overall, the percentage of time when distributed generators are offline because of service interruptions is relatively small, and so is the unsold energy or the energy additionally bought by the customers while waiting for generation to come back online. However, those interruptions may also cause power generation or grid support contracts to be broken, which may carry penalties. Customers may also have to pay additional demand charges, often a large share of the utility costs of business customers.

Service interruptions also cost money, to utilities which is ultimately paid for by customers through higher rates – another key determinant of customer un-satisfaction. First, service interruptions cause power flow and voltage fluctuations as distributed generators trip and come back, and loss of generation and dynamic resources for the grid operator. In an electric network relying partly on distributed energy resources, service interruptions mean additional complexity to maintain stability of the grid and higher costs for network operators who then have to rely on backup resources. Service interruptions even increase operating costs. Fuse saving does not always work: on average, about half of fuse replacements have unknown causes or causes that should normally have been eliminated by fuse saving, such as animal contact.

By the way, the telecom industry also went through a redefinition of what customers mean by quality. It used to be that the main quality measure was voice sound quality during a call[v]. However, voice sound quality has actually gone down in the last decades – the rotary black phone in your grandmother’s old house sounded better than your new iPhone. Nowadays, customer satisfaction is driven more by the convenience of mobility and the possibility of easily doing videoconferencing or multiple parties calls.

In summary, with increasing dependence on reliable power for modern way of life, plus distributed generation earning revenue for customers, outage frequency will become a more and more important factor for customer satisfaction. All this being said, there is hope – new smart grid approaches and protection strategies can result in fewer service interruptions, leading to higher customer satisfaction and lower cost for utilities.


[i]       SAIDI means System Average Interruption Duration Index. SAIDI is the average duration of all the outages seen by customers over the course of a year. In Canada, only interruption durations of more than 1 minutes accrue to SAIDI. Interruptions of less than a minute are considered momentary and do not count toward SAIDI.

[ii]       Evaluation of PowerMax Distribution Automation Strategy, ENMAX Power Corporation, prepared by Quanta Technology, November 29, 2011, page 23.

[iii]     Assessing Residential Customer Satisfaction for Large Electric Utilities, Lea Kosnik et al., Department of Economics, University of Missouri—St. Louis, May 2014.

[iv]      Fuse saving is an electrical protection strategy used on many distribution feeders in Canada. The objective is to avoid that fuses installed on lateral taps blow for a non-persistent fault, such as an animal contact or a lightning strike. With fuse saving, a mainline or station a circuit breaker or recloser is used to operate faster than the lateral tap fuses. A few seconds after an initial fault, the breaker reclose, re-establishing power. If the fault is non-persistent, power will be restored. If not, it may retry later. If the fault is persistent, the breaker will eventually reclose and let the lateral fuse blow, isolating the fault. Because most faults are non-persistent, fuse saving prevents needless fuse blow, avoiding sustained service interruption for customers on the affected lateral. The main disadvantage of fuse saving is that all customers on the circuit see a momentary interruption for lateral faults.

[v]       The quality of a call is given by its Mean Opinion Score (MOS), a subjective measurement where listeners sit in a quiet room and rate a telephone call on a scale of 1 to 5. It has been in use in the telephony industry for decades and was standardized in an International Telecommunication Union (ITU) recommendation.

Lower and Lower Energy Prices from Wind and Solar PV

Reduction in installed costs and operation costs (per kW or MW – see http://benoit.marcoux.ca/blog/the-costs-of-wind-and-solar-pv-systems-are-down-way-down/), coupled with free “fuel” converted into electricity at increasing efficiency, translate directly into lower and lower cost of energy (kWh or MWh). The dropping cost of wind and solar energy can be followed in 2 ways. First, analysts compute the costs over the expected life of a plant, estimate energy production and allocate a fair return for owners to come up with the Levelized Cost Of Energy (LCOE). Second, real-life auctions leading to long-term Power Purchase Agreements (PPA) from utility-scale plants provide actual price data.

At the global level, the International Renewable Energy Agency (IRENA) has built a Renewable Cost Database containing the project level details for almost 15,000 utility-scale renewable power generation projects around the world, from large GW-scale hydropower projects to small solar PV projects, down to 1 MW. IRENA also has an Auctions Database which tracks the results of competitive procurement of renewable power generation capacity that are in the public domain. The Auctions Database currently contains auction results for around 7,000 projects, totaling 293 GW. Figure 1 shows the LCOE and auction data for onshore wind and solar PV, illustrating the sharp decline in the cost of electricity experienced from 2010 to 2017, and signaling prices for 2020 from auction data. Auctions are particularly useful to estimate cost trends in the near future. In essence, just like computer designers are forward-pricing based on Moore’s Law, wind and solar PV developers are forward-pricing installed costs for up to 3 years.

Figure 1 Global levelized cost of electricity and auction price show downward trends for utility-scale onshore wind and solar PV.[i]

Based on LCOE, the average cost of electricity from onshore wind fell by 23% from 2010 to 2017. Based on auction price, we can expect the average cost of electricity from onshore wind farms to decline a further 17% by 2020, to US4.7¢ per kWh. Overall, from 2010 to 2020, the cost of electricity from onshore wind has seen an average reduction of almost 6% per year, or 55% per decade.

Based on LCOE, the average cost of electricity from utility-scale solar PV fell by 73% from 2010 to 2017. Looking forward with auction prices, we can expect the average cost of electricity from utility-scale solar PV to decline a further 47% by 2019, to US4.7¢ per kWh. From 2010 to 2019, the cost of electricity from utility-scale solar PV has seen an average reduction of 20% per year, or 87% per decade.

By 2019 or 2020, the best onshore wind and solar PV projects will be delivering electricity for less than 2¢ or 3¢ per kWh, as shown by the record-low auction prices for solar PV in Dubai, Mexico, Peru, Chile and Saudi Arabia.[ii]This is not missed by leading industry executives. During the January 2018 investor call, Jim Robo, Chairman and Chief Executive Officer of NextEra Energy, noted:

  • “[Without] incentives, early in the next decade wind is going to be a 2 to 2.5 cent per [kWh] product.”
  • “By early in the next decade, as further cost declines are realized, and module efficiencies continue to improve, we expect that without incentives solar pricing will be 3 to 4 cents per [kWh], below the variable costs required to operate an existing coal or nuclear generating facility of 3.5 to 5 cents per [kWh].”[iii]

This executive is saying that generating energy from wind and solar PV will cost less than just burning fuel in existing plants.

Even in Canada?

In December 2017, the Government of Alberta announced the results of its Renewable Electricity Program, for nearly 600 MW of wind generation to be operational in 2019, at prices ranging from 3.09¢ to 4.33¢ per kWh, setting a new record in Canada.[iv]Those wind farms will be located in Southern Alberta, where the onshore wind resources are the best in Canada.

Already now, and increasingly in coming years, some wind and solar PV power generation projects can undercut fossil fuel-fired electricity generation, without financial incentives, and this is coming to Canada very quickly.

Global averages do not reflect the broad variation in the quality of solar or wind resources at any given location. For example, Figure 11shows the LCOE in 3 U.S. cities for utility-scale solar PV: Phoenix, AZ (a southern high-insolation area), Kansas City, MO (an average city in the U.S.), and New York, NY (typical of the North-East). A utility-scale solar PV plant in a high-insolation area like Phoenix can produce electricity for approximately 30% less than a plant in New York. However, all geographies have seen a decline in the cost of generation. Given the average decline of 20% per year, costs in New York are about 18 months behind costs in Phoenix.

Figure 2 Cost of electricity generated from utility-scale (one-axis tracking) solar PV increases at higher latitudes[v]

Cities with better isolation can be expected to have better solar PV capacity factor, and this is true when comparing U.S. and Canadian cities, as shown in Table 1.

Table 1 Approximate annual generation of a 100-MW tracking solar PV systems in various North American cities[vi]

City Annual generation in MWh for a 100-MW system % vs. Phoenix
Phoenix, AZ 219,000 100%
Kansas City, MO 173,000 79%
New York, NY 153,000 70%
Lethbridge, AB 189,000 86%
Calgary, AB 182,000 83%
Montréal, QC 146,000 67%
Toronto, ON 144,000 66%
Halifax, NS 145,000 66%
Vancouver, BC 135,000 62%

Based on this table, utility-scale tracking solar PV system in Southern Canada generates approximately 62% to 86% of the electricity generated by a similar system in Phoenix, AZ. Southern Alberta has the best solar resources in Canada, above the U.S. average (represented here by Kansas City, MO).[vii]Given that cost of electricity from utility-scale solar PV sees an average reduction of 20% per year, the large Canadian cities are just 1 to 2 years behind Phoenix.

The annual generation stated in Table 1does not reflect diurnal and seasonal variations in output. After all, the sun does not always shine, nor does the wind always blow. A combination of dispatchable generation, transmission networks, demand management programs and energy storage is required to balance the grid, including the variability of wind and solar generation. However, it is interesting to note that the wind and solar resources in Canada are quite complimentary:

  • Geographically, the onshore wind resources are better at higher latitudes, while the solar resources are better in Southern Canada.[viii]
  • In Southern Canada, Alberta and Saskatchewan offer the best onshore wind and solar resources.
  • Offshore wind is available on the Pacific Coast (British Columbia), on the Atlantic Coast (Maritimes provinces and NF&L), on the Great Lakes (Ontario) and Lake Winnipeg (Manitoba).
  • Hydroelectric potential is greatest in Québec and Manitoba.
  • Across Canada, wind resources are, on average, better in the winter, while the solar resources are better in the summer. There is also some hourly complementarity between wind and solar potential.[ix]

References:

[i]       Renewable Power Generation Costs in 2017, International Renewable Energy Agency, 2018, Figure 2.12, p. 50.

[ii]      Renewable Power Generation Costs in 2017, International Renewable Energy Agency, 2018, p. 19-20.

[iii]     http://www.investor.nexteraenergypartners.com/phoenix.zhtml?c=253465&p=earningsRelease, accessed 20180130.

[iv]      https://www.aeso.ca/market/renewable-electricity-program/rep-round-1-results, accessed 20180128.

[v]       U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017, National Renewable energy laboratory, Figure ES-3.

[vi]      http://pvwatts.nrel.gov/index.php, accessed 20180129, and author’s calculations.

[vii]     Calgary is the sunniest of Canada’s largest cities and Edmonton is the third-sunniest. Perhaps surprisingly, Alberta enjoys a much better solar resource than Germany, an early leader in solar PV.

[viii]    See the The Atlas of Canada – Clean Energy Resources and Projects (CERP), http://atlas.gc.ca/cerp-rpep/en/, accessed 20180129, for the wind and solar energy resource potential in Canada.

[ix]      Energy Watch Group, Global Energy System Based on 100% Renewable Energy – Power Sector: Canada, Lappeenranta University of Technology, 2017, p. 5.

CEA Tigers’ Den Workshop

On February 21, 2018, I presented at the annual T&D Corporate Sponsors meeting of the Canadian Electricity Association. This year, the formula what similar to the “dragons” TV program, with presenters facing “tigers” from utilities. They asked me to go first, so I didn’t know what to expect, but it went well. Or, at least, the tigers didn’t eat me alive.

The theme was a continuation of my 2017 presentation, this time focusing on what changes utilities need to effect at a time of low-cost renewable energy.

I’ve attached the presentation, which was again largely hand-drawn: CEA 20180221 BMarcoux.

Les véhicules électriques: une revolution? (Electric Vehicles : a revolution?)

Here is a presentation I did at the Projet Ecosphère conference on October 25, 2010. It outline problems and solution for the introduction of electric vehicles on our roads. This one is in French.