Category Archives: Policies and Regulatory

The Cost of Outages Is a Policy Issue

Based on my work with Canadian and Australian utilities, the cost of outages is first a policy issue – not a regulatory one, not an operation one. Arguments based on the cost of outages may resonate with policy makers, including Smart City stakeholders, because of public pressure or impact on the economy at large. However, these arguments do not resonate with regulatory agents (who follow policies) nor with utilities (who do not have customer outage costs in their financial statements. Individual users may or may not know their specific costs related to outages, but broad outage cost assessments will not affect them

While utility customers are the ones bearing the cost of outages, multiple surveys have shown that customers are not willing to pay more for more reliable power. Even in individual cases, where a utility would propose to split specific reliability improvement costs with industrial users, the customers decline even though the associated payback period was much shorter than would be required for other purchasing decisions. Essentially customers are saying to policy makers and regulators that they pay enough and that reliability is something that is just expected. Public opinion, regardless of the actual costs incurred, is a powerful tool for disgruntled customers, who can vote policy makers in or out of office. Public opinion may incite policy makers to act, requiring utilities to invest in reliability improvement

This being said, customers incur real costs when an interruption occurs, but accurately capturing these costs is elusive – the ICE calculator is the best developed attempt at estimating overall economic costs. Policy makers, stewards of the economy, can be sensitive to the economic cost argument, when reliability improvement costs are seen through the lens of an industrial policy, with may lead to subsidies to improve reliability

The regulatory agencies follow policies. Traditionally, rates that utilities charge are based on the cost of generating, transmitting and distributing. In return for their obligation to serve customers in an exclusive service territory, utilities are allowed a guaranteed rate of return on their capital expenditures. Reliability is attained tacitly through conservative engineering and maintenance activities. However, policy and regulatory changes over the last 20 years or so have put tremendous pressure on utilities to reduce their costs, and many have gone through or are still going through massive downsizing. As a direct consequence, reliability suffered for some systems. If reliability incentives or penalties are used, reliability targets are typically based on historical values, not the economic costs of outages

Utilities would like to invest more to improve reliability. These investments would add to the asset base upon which investors get a guaranteed return. However, regulators may not let utilities spend for reliability improvement because of the impact on rates unless policy requires them to

Since outage costs may resonate with policy makers, it is a worthwhile argument for Smart City initiatives. Cities cannot function without electricity. It moves subways and trains. It cools, heats and lights our homes and businesses. It pumps our water and keeps fresh the food we eat. And it powers the technologies that are the foundation of a Smart City. By implementing smart grid technologies such as microgrids and distribution automation, electric utilities play a key role in making cities both resilient and sustainable. Yet, many electric utilities do not partner with mayors to work on cities’ resiliency and sustainability challenges. Policy makers could then use outage cost arguments when working with their utilities on reliability improvement initiatives.

 

Tutorial: Key Players in the Energy Markets: Rivalry in the Middle

See also the previous post.

The players described in the previous post have vastly different characteristics. The most striking difference is the level of rivalry.

IMG_2174

Distributors operate in a defined territory, often corresponding to a city, a state or a province, where they are the sole provider – thankfully, as there would otherwise be multiple lines of poles along roads. Given this monopoly, distributors are subjected to price regulation, meaning that the price they charge for the use of their infrastructure (poles, conductors, cables, transformers, switches, etc.) is set, typically equal to their costs plus an allowed return on their investment. This is done by filing tariffs that are approved by the regulatory body following a rate hearing.

Retail is often a competitive industry, as there is no structural barrier to having multiple players. However, some distributors are also given the retail monopoly over their territory. Some may also provide retail services in competition with other retailers. In those cases, the distributor-owned retailer is also regulated and has to seek approval of its rates, but other retailers typically do not, although they may have to file their rate plans.

It is possible to have multiple transmission companies operating in the same territory, each owing one or a few transmission lines. However, because those transmission lines are not perfect substitutes (they do not necessarily have the same end-points in the network) and because transmission capacity is scarce, electricity transmitter typically have regulated rates, although they may compete for new constructions.

System operators are monopolies over a territory, and they have to maintain independence. They are, in effect, monopolies, although system operators are often government- or industry-owned. Their costs are recharged to the customer base, directly or indirectly.

Large generators are in a competitive business, competing in an open market, although distributed generators, which are much smaller, usually benefits from rates set by a regulator or a government.

Tutorial: Key Players in the Energy Markets

I will be making a conference to investors later this year and I will also be training some people internally at my employer. The topics will touch on the electricity industry structure and I am preparing some material for it.

The industry can be quite complex in some jurisdictions. I boiled the complexity down to just this:

New Picture

Traditional large-scale generator own and maintain coal, natural gas, nuclear, hydro, wind and solar plants connected to transmission lines. Those are large plants – typically hundreds of megawatts.

Transmitters own and maintain transmission lines – the large steel towers seen going from large generators to cities. Those typically run at 120,000 volts and more, up to over 1,000,000 volts in some cases.

Distributors own and maintain the local infrastructure of poles and conduits going to customer sites. Those typically run at 1,200 to 70,000 volts, usually stepped down to 600 volts. 480 volts, 240 volts or 120 volts for connection to customers.

Most customers are connected to distributors, although some large industrial facilities (such as aluminum smelters) are directly connected to transmission lines.

While customers are connected to distributors, they purchase electricity from an independent retailer or from the retail arm of a distributor.

With customer installing distributed generation on their premises, they sell back power to the market, often through aggregators.

Retailers buy electricity from generators in an energy market – like a stock exchange, but for electricity.

By definition, the energy produced at any instant must be equal to the energy taken by customers, accounting for a small percentage of losses in transmission and distribution. (We are starting to see large-scale storage operators, which may act as both consumer and generator, depending they are charging or releasing electricity in the network.) This critical balance is maintained by the system operator that direct generators to produce more ore less to match load; in some case, the system operator will also direct distributors to shed load (customers) if generation or transmission is insufficient to meet the demand.

The next post will deal with energy and money flows in the market.