Category Archives: Grid Operations

Renewables and Reliability: A Reflection on the Power Outage in Spain and Portugal

(LinkedIn: https://www.linkedin.com/pulse/renewables-reliability-reflection-power-outage-spain-portugal-benoit-3trle/)

I was in Spain during the major power outage on April 28, 2025. And no, it wasn’t my fault! Eleven hours without electricity is a memorable experience, even in a country with a modern grid like Spain’s. Since then, several commentators have blamed the high levels of wind and solar generation present at the time. I believe this interpretation is mistaken.

Events like this should not cast doubt on the reliability of renewable-rich grids. Rather, they remind us that such systems must be designed and planned differently.

A renewable grid is different—not less reliable

Legacy power systems were built around large thermal or hydro plants that provided natural inertia, centralized control, and predictable output. Modern grids, enriched with renewable resources, require a different approach:

·       Frequency, voltage, and stability must be ensured through technologies like battery storage, dynamic controllers, and synthetic inertia.

·       Planning must account for the production profiles of solar and wind, their variability, and their geographic complementarity.

·       Interconnections must be strengthened to allow the system to self-balance on a larger scale.

Don’t confuse a grid outage with a technology failure

Even though the April 28 incident occurred during high renewable output, that doesn’t mean renewables were to blame. Major outages almost always stem from systemic issues: poorly coordinated protection systems, the loss of critical transmission lines, insufficient inertia due to equipment failure, or a poor response to a localized disturbance.

What this really shows is that our planning approach must evolve. We can’t simply add solar and wind to an architecture built for centralized thermal or hydro power. We need to rethink the foundations of the system.

Storage: a critical ally

Large-scale storage, deployed intelligently, can serve several critical functions:

·       Frequency support

·       Black start capability

·       Smoothing variable generation

·       Fast-acting power reserve

It’s also worth noting that the sudden loss of a major load, such as a large data or AI center, can disrupt the grid as much as the shutdown of a power plant — a risk often underestimated in traditional planning.

Storage comes in many forms — pumped hydro, thermal, chemical (batteries) — and can be complemented by other flexibility sources like demand-side management. That said, batteries, with their rapidly falling costs and high operational flexibility, are likely to play an increasingly central role. They are a key element in a technological ecosystem capable of ensuring the stability, flexibility, and resilience required by a modern, renewables-rich grid.

Conclusion

It’s not the presence of renewables that makes a grid fragile — it’s the lack of adaptation to this new reality. Tomorrow’s grids cannot be based on yesterday’s models. They must be designed with the right tools, the right signals, and planning oriented toward resilience.

Reliability is not a legacy — it’s something we build.

Énergies renouvelables et fiabilité : retour sur la panne en Espagne et au Portugal

(LinkedIn : https://www.linkedin.com/pulse/énergies-renouvelables-et-fiabilité-retour-sur-la-panne-marcoux-dn4ue/)

J’étais en Espagne lors de la grande panne électrique du 28 avril 2025. Onze heures sans électricité, c’est une expérience marquante, même dans un pays doté d’un réseau aussi moderne que celui de l’Espagne. Depuis, plusieurs commentateurs pointent du doigt la forte production éolienne et solaire en cours au moment de l’incident. C’est une interprétation que je crois erronée.

Ce type d’événement ne devrait pas nous faire douter de la fiabilité d’un réseau riche en énergies renouvelables, mais plutôt nous rappeler qu’un tel réseau doit être conçu et planifié différemment.

Un réseau renouvelable est différent, pas moins fiable

Les systèmes électriques historiques ont été construits autour de grandes centrales thermiques ou hydroéectriques fournissant une inertie naturelle, un contrôle centralisé et une production prévisible. Mais les réseaux modernes, enrichis de ressources renouvelables, nécessitent des approches différentes :

·       La fréquence, la tension et la stabilité doivent être assurées par des technologies comme le stockage par batteries, les contrôleurs dynamiques et l’inertie synthétique.

·       La planification doit intégrer les profils de production solaire et éolienne, leur variabilité et leur complémentarité géographique.

·       Les interconnexions doivent être renforcées pour que le système puisse s’autoréguler à grande échelle.

Ne confondons pas une panne de réseau avec un échec technologique

Même si l’incident du 28 avril s’est produit à un moment où les renouvelables étaient abondantes, cela ne signifie pas qu’elles en sont la cause. Les pannes majeures ont presque toujours des causes systémiques : protection mal coordonnée, perte de lignes critiques, réserve d’inertie insuffisante suite à un bris, ou mauvaise réponse à un incident local.

Ce que cela révèle, c’est que notre manière de planifier le réseau doit évoluer. On ne peut pas simplement ajouter du solaire et de l’éolien à une architecture conçue pour le thermique et l’hydro centralisé. Il faut repenser les fondations du système.

Le stockage, un allié essentiel

Le stockage à grande échelle, déployé intelligemment, peut jouer plusieurs rôles critiques :

·       Soutien à la fréquence

·       Démarrage sans réseau (black start)

·       Lissage de la production variable

·       Réserve de puissance rapide

Notons aussi que la perte soudaine d’une charge importante, comme un grand centre de données ou d’intelligence artificielle, peut perturber tout autant l’équilibre du réseau que l’arrêt d’une centrale de production — un risque souvent sous-estimé dans la planification traditionnelle.

Le stockage prend plusieurs formes — hydraulique pompée, thermique, chimique (batteries) — et peut être complété par d’autres sources de flexibilité comme la gestion de la demande. Cela dit, les batteries, avec leurs coûts en baisse rapide et leur grande flexibilité d’opération, sont appelées à jouer un rôle croissant. Elles constituent un élément clé d’un écosystème technologique capable d’assurer la stabilité, la flexibilité et la résilience nécessaires à un réseau moderne riche en énergies renouvelables.

Conclusion

Ce n’est pas la présence de renouvelables qui rend un réseau fragile, c’est l’absence d’adaptation du système à cette nouvelle réalité. Les réseaux d’avenir ne peuvent être calqués sur ceux du passé. Il faut les concevoir avec les bons outils, les bons signaux, et une planification tournée vers la résilience.

La fiabilité n’est pas un héritage : c’est une construction.

A Perspective on Canada’s Electricity Industry in 2030

I wrote this piece with my friend Denis Chartrand as a companion document for my CEA presentation back in February 2018 (See https://benoit.marcoux.ca/blog/cea-tigers-den-workshop/) but I now realize that I never published it. So, here it is!

Canada Electricity Industry 2030 20180221

CEA Tigers’ Den Workshop

On February 21, 2018, I presented at the annual T&D Corporate Sponsors meeting of the Canadian Electricity Association. This year, the formula what similar to the “dragons” TV program, with presenters facing “tigers” from utilities. They asked me to go first, so I didn’t know what to expect, but it went well. Or, at least, the tigers didn’t eat me alive.

The theme was a continuation of my 2017 presentation, this time focusing on what changes utilities need to effect at a time of low-cost renewable energy.

I’ve attached the presentation, which was again largely hand-drawn: CEA 20180221 BMarcoux.

Reducing Reliance on Individuals in Field Regions

In a previous post, I said that consolidation reduces costs. But it does more: consolidation eases implementation of systems to reduce dependency on the particular knowledge and experience of key individuals. This is particularly clear in 2 areas:

  • Work Scheduling and Dispatching. Advanced schedulers, such as ClickSoftware, may automatically dispatch field crews based on skillset, equipment and availability, without relying on dispatchers’ particular knowledge and experience, especially for unplanned (emergency) work. In reducing human interventions, dispatchers become supervisors of the overall process, focusing on difficult situations that the system cannot process effectively by itself. In addition to more efficient truck rolls, the number of dispatchers and schedulers (now consolidated) can be reduced.
  • Customer Relationships Management (CRM). Large utilities may have sophisticated Customer Information Systems (CIS) for millions of residential and small commercial and industrials accounts, but there is often no system to manage the hundreds of large commercial, industrial and institutional (CI&I) customers. Therefore, these remain the privy of local resources owning the customer contacts. The lack of rigour in regard to customer contact is probably a contributor to low CI&I customer satisfaction often observed. It would not make sense to implement a large system for a few customers, but a light CRM, such as Salesforce.com, can be cost effective and have a relatively fast implementation time

Full disclosure: My father worked for 25 years as a utility dispatcher. He is long dead now, but I am sure that he would be amazed to see the tools that dispatchers at modern utilities may have now.

Reducing Overhead by Consolidating Field Regions

Large utilities have many multiple regions in their territory, with each region having multiple field depots. This structure leads to a great amount of duplication and overlap of responsibilities as key business functions such as work planning, work scheduling, project management and customer relationships are duplicated across regions. This also causes deviations and lack of uniformity in the way the work is executed in regions and depots.

There is a clear trend in the industry to consolidate regions and depots, flattening the organisation. Talking to utility managers having gone through consolidation of field regions, I concluded that one can expect a 20% reduction in overhead in a 2:1 consolidation – and this can be compounded many times, i.e. a 4:1 consolidation leads to almost 40% overhead reduction.

Why was this not done earlier? Implementation of Enterprise Resource Management (ERP) systems, which forces standardization of process, is one key driver. Furthermore, an ERP can effect consolidation without requiring centralization of roles – consolidation without centralization has less organizational resistance from middle management than pure centralization.