Category Archives: Public Presentations

A Perspective on Canada’s Electricity Industry in 2030

I wrote this piece with my friend Denis Chartrand as a companion document for my CEA presentation back in February 2018 (See but I now realize that I never published it. So, here it is!

Canada Electricity Industry 2030 20180221

Barbarians at the Gate (or: How to Stop Worrying and Love Your Customers)

This mouthful title was the title of my presentation today at the Smart Grid Canada conference in Montréal.

As usual, it is written in my somewhat funky style and provocative, but was well received.

Let me know what you think!

SGC20180912 BMarcoux

CEA Tigers’ Den Workshop

On February 21, 2018, I presented at the annual T&D Corporate Sponsors meeting of the Canadian Electricity Association. This year, the formula what similar to the “dragons” TV program, with presenters facing “tigers” from utilities. They asked me to go first, so I didn’t know what to expect, but it went well. Or, at least, the tigers didn’t eat me alive.

The theme was a continuation of my 2017 presentation, this time focusing on what changes utilities need to effect at a time of low-cost renewable energy.

I’ve attache the presentation, which was again largely hand-drawn: CEA 20180221 BMarcoux.

AIEQ Conference on Smart Grid

Today, I moderated a panel on microgrids at a smart grid conference hosted by the electric industry association of Québec (AIEQ). I think that it went quite well. Chad Abbey (Smarter Grid Solutions), Michel Carreau (Hatch), Teddy Chettiar (S&C) and Ronald Denom (Ossiaco) were on the panel. Chad presented 3 microgrid cases, including one on the Shetlands Isles off Great Britain – an obviously remote community. Michel continued by presenting the challenges of microgrids (and the recent progress) in the Canadian North. Further South, Teddy both in-front and behind-the-meter examples, including one in North Bay. Ron focused on behind-the-meter applications, with the “nano grid” concept.

Other panels focused on the smart grid proper, with Greg Farthing (ABB) moderating Gary Rackliffe (ABB), Jayant Kumar (GE) and Mark Feasel (Schneider), and on cybersecurity, with Oral Gürel (Schneider), moderating and Dominique Gagnon (CGI) , Robert Nastas (PM SCADA), Bruno Lafeytaud (Accenture) and Pierre Taillefer (Vizimax) presenting.

The panels were followed by a dynamic luncheon presentation by Eric Filion, VP Customer Service at Hydro-Québec Distribution. Éric highlighted the goal of Hydro-Québec to become more of a lifestyle service provider and increase customer loyalty (going well beyond customer satisfaction). Éric presented 5 innovation trends (see picture) which, I think, are worth sharing.

Thanks to all panelists and to the AIEQ for organizing this very successful event.

Strategic Electricity Inter-ties Committee of the House of Commons

On October 25, I appeared before the Standing Committee on Natural Resources discussing Strategic Electricity Inter-ties. The Standing Committee on Natural Resources studies bills, government activities and expenditures, and issues related to Canada’s energy, forest, minerals and metals, and earth sciences sectors.

The idea behind strategic electricity inter-ties is to improve power exchanges between provinces by increasing tie capacity with new transmission lines. The brief that I wrote  and my testimony argued that that energy storage may be a better alternative in light of the long time frame to build new transmission lines (15-20 years is typical), the current state of the art in storage, and expected growth in performance and cost decline of the technology.

It was my first experience of appearing before such a committee, and I like the experience. I was impressed by the questions that the members of parliament asked. They also seemed to like my arguments, as many came to me afterward to thank me.

The Sun for a Penny

I recently presented at the Canadian Electricity Association (CEA) on the future of the industry. What would happen to the power industry if the cost to generate solar electricity reached 1¢/kWh? What could be the impact of a carbon tax? What are the business opportunities arising from the need for reliable power? While electric utilities have seen tremendous transitions during the 125-year history of the CEA, the current rate of development is unprecedented. To paraphrase a famous quote by Wayne Gretzky, utilities need to “skate to where the puck is going to be, not where it has been.” This presentation tried to provide power utilities with some insights into the future direction of the puck! See the presentation here: The Sun for a Penny 20170225a

“Resilient Power for Sustainable Cities” Presentation at the Canadian Electricity Association

I presented this to senior managers of Canadian utilities attending the 24 February Distribution Council of the Canadian Electricity Association. It can be found on SlideShare at


The cost of disasters has been increasing exponentially since the 1970s – and cities are mostly affected, which is not surprising since cities produce 80% of the world gross domestic product (GDP). Since the majority of disasters are related to climate events, cities are also part of the root cause, since they generate 75% of our greenhouse gas (GHG) emissions. Mayors, acting locally on a short feedback loop, view the challenges they face on a daily basis – it is about their constituents getting sick, having clean water, being warm or cool, holding productive jobs, commuting efficiently, surviving disasters. They see that a smart city needs, first and foremost, to be both resilient to face increasing disasters and sustainable to reduce its environmental impact and to improve quality of life – while being financially affordable

Cities can’t function without electricity. It moves subways and trains. It cools, heats and lights our homes and businesses. It pumps our water and keeps fresh the food we eat. And it powers the technologies that are the foundation of a smart city. By implementing smart grid technologies such as microgrids and distribution automation, electric utilities play a key role in making cities both resilient and sustainable. Yet, many electric utilities do not partner with mayors to work on cities’ resiliency and sustainability challenges. A better approach is to see city policy makers as major stakeholders and a driving force in modernizing the grid.

Have you talked to your mayor(s) lately?

Evolution of Energy Generation and Distribution in Canada’s Smart Power Grid – Innovation 360 Conference Panel

On September 29, I was asked to participate on a panel titled “Evolution of Energy Generation and Distribution in Canada’s Smart Power Grid” at the Innovation 360 conference in Gatineau, Québec ( Here is the essence of what I contributed.

By definition, in an electricity network, energy consumption plus losses equal electricity generation. This must be true at any point in time, or protection systems will shed load or trip generators.

There are 4 ways to balance load and generation:

1) Traditionally, dispatchable generators that can easily ramp up or down were tasked to follow the load. Big hydro plants and natural gas generators are particularly good at this. However, we are running of big hydro opportunities, and natural gas are sources of greenhouse gas emission, contributing to global warming.

2) Another way to balance load and generation is to interconnect with neighboring network that may not have the same load profile. Today, all of North America is interconnected in some way. However, building transmission lines is a lengthy process that typically faces major local opposition. As a result, most transmission lines run at capacity during peaks, weakening the bulk transmission system as the Northeast blackout of 2003 demonstrated.

3) In the last couple of decades, we have started to control load, like turning off air conditioning units by pager or getting large industrial like smelters to go offline for a couple of hours during a major peak. Time-of-use or market pricing are also attempts to have loads better follow available generation capacity. However, much of the conservation focus thus far has been on energy efficiency, not peak load reduction.

4) Very recently, energy storage has been getting attention. Traditionally, the only utility-scale storage technology available was pump-storage, like the Sir Adam Beck plant in Niagara, but few of those plants are possible, and they are not efficient. Going forward, batteries, either utility-scale or distributed storage, will grow, although for now utility-scale batteries are MW-class, when hundreds of MW or GW are needed.

Balancing load and generation is also becoming more and more difficult. On one hand, consumption is getting peakier, partly due to side effects of some energy saving programs, like turning down thermostats at night in the winter, and then turning them back up in early morning, just in time for the morning peak. On the other hand, wind and solar generators are replacing fossil generators, adding unpredictability to generation and taking away controllability, thus requiring even more balancing resources.

Integrating renewable into the grid is not only causing balancing problems. It also creates voltage management and protection problems. Those are solvable, but significant, engineering problems that require expensive upgrades to the electricity grid.

Ultimately, load and generation balancing, voltage management and grid protection adds costs that are ultimately born by subscribers. It therefore quickly becomes a political issue.

As a society, we have been subsidizing fossil fuels. Clearly, going forward, we will need to greatly invest in the grid if we want to limit the predicaments of global warming for our children and grand-children.