Category Archives: Future of Utilities

Canada’s Electricity Industry in 2030

The cost of solar and wind energy and energy storage have been coming down at double-digit rate per year for many years. Every year. Double-digit percentages. Again. It continues. Tirelessly. No end in sight. Capitalism and innovation at their best. No government regulation nor corporate ego will stop it. And it will reshape – no, it is reshaping – the power industry in Canada.

By 2030, renewables will be so inexpensive that they will have upended the traditional economics of the industry. But we can see this transformation to its logical conclusions, based on how the power industry is evolving elsewhere in the world and how other industries went through similar transformations.

If ever lower-cost renewables and energy storage triggered the reshaping of the electricity industry, other factors tint how industry stakeholders: the impacts of climate change, our increased dependence on reliable electricity, and the higher cybersecurity threats. Each of these factors helps define how utilities, customers, regulators, policy makers and product and service vendors react to or take advantage of the situation, sometimes trying to accelerate change, sometimes attempting to slow down. However, if broad conclusions can be drawn, we need to be mindful that local specificities in resource availability, cost structure and ownership will mean that the end game will not exactly be the same everywhere.

Wind, solar and storage are not only becoming increasingly cost effective, but doing so at a much smaller size than traditional generation. By 2030, customers will be installing solar panels on their side of the electricity meter, on rooftops and backyard, even in absence of incentives or net metering, taking whatever “free electrons” they can and wasting what they will not be able to use or sell. If wasting electricity seems heresy, think about the iPhone in your pocket: it has more computing power than a supercomputer of a generation ago, and yet it is idling most of the time, its vast computing power wasted. Yet, the iPhone has transformed our daily relationship to computing. Similarly, inexpensive renewables and storage will transform our relationship to electricity.

Even with this abundance of distributed generation, grid defection will be the exception, as customers keep the utility connection as a last resort and because space constraints and the low energy intensity of solar and energy storage make it impractical to generate all the energy needed in urban areas. Nevertheless, abundance will cause energy (kWh) price to plummet, especially since electricity consumption has plateaued in Canada, taking traditional utility revenue along.

Commercial and industrial customers, as well as some residential customers, will take this a step further by having energy storage as well. By adding storage, customers can arbitrage time-of-day rates or peak demand charges, shifting consumption at other times to reduce costs. Having local generation and storage also turns a customer site into a microgrid able to maintain power during grid disturbance or outage, maintaining production for businesses and food stuff cold for consumers. Some smart communities and campuses will also become microgrids regrouping multiple customers and utility-scale resources for better resiliency and efficiency.

Given how low-cost renewables and storage are advancing, by 2030, if not before, the traditional, centralized grid will have been transformed into a digital grid of microgrids integrated to distributed renewable energy resources. This will have repercussions across the industry, transforming competition, energy markets, regulation, grid architecture and utility operations.

Retail Unbundling and Competition

Having so much customer-owned distributed generation will put pressure on policy makers and regulators to allow retail competition, so that distributed generators may sell surpluses on open markets. With retail competition, customers have more choices in what energy they use, what energy they sell, and how they use it, including sophisticated demand response programs to support energy balancing on the grid.

The retail arm of utilities and the wire business will be unbundled (as it is already the case in Alberta), allowing energy service providers to compete in energy retail, perhaps along with utilities’ unregulated subsidiaries. This will also expose the capacity-driven cost of the distribution grid, now charged separately. This is similar to long-distance telephone service unbundling in the 1990s. With competition forcing energy market players to keep price low, energy price regulation will be lightened, just like telephone regulations are much lighter now than they were 25 years ago.

Renewed Energy Markets

Today’s energy markets were not designed for the large number of players distributed across the grid with varying capabilities that we will have in 2030. Energy markets will evolve to improve the way electricity is priced, scheduled and procured in order to ensure reliability, transparency, efficiency and at the lowest cost. Through the energy market, distributed energy storage systems will accumulate electricity when the sun is shining or the wind blowing, releasing it at time of use. Demand management will shape the load curve to better match availability of inexpensive renewable resources. Electric vehicles will be charged during the day, and give power back to the grid if needed.

New transactional technologies, such as blockchain, may be required to deal with the sheer volume of automated transactions. Market intermediaries to act on behalf of distributed asset owners, simplifying the process and offering financing.

Performance-Based Regulation

In the traditional Canadian rate-of-return regulatory framework, electric utilities earn a return on investments based on the depreciated cost of past capital expenditures approved by the regulator. This model will no longer be suitable in 2030 to regulate the wire business of utilities because of its “capital bias”, its insensitivity toward grid reliability, its inhibition of innovation, and its short-termism. The regulatory regime will evolve to incentivize lower total costs (including incentives to use non-wire alternatives such as third-party energy storage) and better reliability (to avoid momentary service interruptions that trip distributed generators offline), with utilities freed to implement innovative solutions without regulators and interveners second-guessing investment in technology. Multi-year incentive plans will allow utilities to plan ahead better. Similar approaches already exist, as in Great Britain, where the regulator developed its RIIO (Revenue = Incentives + Innovation + Outputs) 8-year model.

High-Availability Distribution Grid?

By 2030, we will obviously not have replaced all poles, conduits and wires that make up the legacy grid – nor should we try to. Utilities, however, will have transformed this critical infrastructure to make it resilient (especially against the impacts of climate change) and reliable (to keep now-essential distributed energy resources online).

We will more storm-proofing of critical feeders, including undergrounding of mainlines, with intelligent protection devices on laterals, near customers and distributed energy resources to minimize disturbance while faults are being cleared on overhead lines. Protection devices, switches and sensors will be automated to the best extent possible and remotely operated, from a control room or from a truck, freeing operators and crew to better manage and repair outages. Remote control will allow protection settings to be more sensitive to limit the risk of forest fires caused by the electrical grid.

New Operating Model in Distribution

In a technology-intensive environment in constant innovation and with ever-increasing cybersecurity threats, utilities will develop new skills and will learn to leverage partnerships with vendors. This is very different than traditional distribution grid operation, still largely relying on physical work and manual switching.

In their new high-tech and fast-changing environment, utilities will implement new business process and organizational structures to take advantage of the latest technology innovations. At the same, new skills technology skills are required, including cybersecurity. Rather than doing things internally, as they are often used to, utilities will partner with technology vendors that have the scale and the expertise to provide better products and professional services at a lower cost. Essentially, utilities will follow the path already taken by telecom network operators.

New business models in the industry

New businesses will cater to energy customers, distributed generators and microgrid owners, removing complexity and turning energy into services.

Energy customers, distributed generators, and microgrid owners will be supported by an ecosystem of third-party vendors and unregulated utility subsidiaries. Vendors will support customers with low-cost financing and technology to optimize the use of distributed assets on energy markets, lowering costs. For utilities, this is a clear growth opportunity, not limited to traditional territories. With transportation electrification, the electric industry will essentially replace the petroleum industry, with new businesses supporting public charging of electric vehicles – a welcome development as it could prevent further reduction in electricity consumption.

Conclusion

This new, distributed and digital-enabled electrical grid will be more resilient and sustainable. Its resiliency is based on multiple and alternate energy local sources and paths, with reduced reliance on large infrastructure. This new resilience is welcomed given the growing importance of electricity in energy use, as residential and industrial customers are dependent on electricity to power our modern life in smart communities and with the advent of electrical transportation. The new grid will also be more sustainable, reducing the environmental impact of communities and improving quality of life – while being financially affordable.

Preparing for the future is essential for Canadian electric utilities and new players. In an industry traditionally defined by centralized generation and rigid geographic boundaries between utilities, new linkages need to occur: utilities and customers, vendors and entrepreneurs, cities and businesses, ensuring that all see the opportunities that didn’t exist before and have the support they need to get their ideas to market quickly. The structure of the industry will emerge transformed, with Canadian-owned service providers offering novel energy solutions in Canada, backed by a web of hardware, software, and professional service vendors. Realizing this vision will increase opportunities for Canadians to export their energy, their expertise, and the fruit of their labor.

Telecom as a Model, not a Service, to Electric Utilities

On September 27, 2017, I presented at the Utilities Technology Council of Canada. I have attached the presentation, and here is the abstract.

Abstract: The telecom industry has seen tremendous changes, replacing in just a few short years the Plain Old Telephone System that took over a century to build with the Internet and cellular networks. Since telecom and electric utilities have a lot in common, like linear assets, large customer base and territory, and technology-driven culture, what can we learn from the transformation of telecom to better manage the ongoing technological changes in electric utilities?

A pillar of the Canadian economy is undergoing a profound transformation

Now is a time of innovation in the electric industry, like no other since Thomas Edison.

Now is the time when wealth can be created as we use our resources and our brains to ensure a resilient and sustainable energy future for all.

Potential wealth creation stems from the fundamental changes occurring in the electricity sector:

  • Globally, electricity and heat production are the largest contributors to greenhouse gas (GHG) emissions. Canada is blessed with abundant carbon-free hydroelectric generation, but our energy sector as a whole is a major emitter of climate-changing GHG.
  • In response, major investments have been made across the world in designing and implementing renewable sources and energy storage, including wind and solar. The price of those sources is decreasing at double-digit rates per year and they are getting increasingly competitive with traditional sources.
  • Wind and solar generation are not only becoming cost effective, but doing so at a much smaller scale than traditional generation. Distributed generation is being installed deep in the electrical grid, at its edges or even behind the meters. The traditional and centralized grid designed by Edison is being transformed into a digital grid of microgrids integrated to local energy resources.
  • The new, distributed and digital-enabled electrical grid is more resilient because it relies on multiple and alternate energy sources and paths. The electrical grid then becomes more resilient to extreme weather events that, unfortunately, become more frequent with climate change.
  • Residential and industrial customers benefit from improved reliability as they are increasingly dependent on electricity to power our modern life in smart communities and with the advent of electrical transportation.

Innovation and wealth creation opportunities are everywhere in this context. Technical innovation is what drives the decreasing costs of renewable sources for energy users. Vendors need to invent new commercial solutions to balance the new distributed grid and ensure that customers stay powered up. Increasing energy efficiency means that we can do more with less. Utilities and entrepreneurs adopt new business models to better serve customer segments. In particular, utilities, previously defined by their geographic territories, are morphing into energy service providers, often competing with offerings from new entrants, or even competing with each other like never before, driving cost down for Canadian consumers and businesses. The digitalization of the electrical grid creates large quantities of data that new software applications can leverage to increase efficiency and create commercial opportunities. Canadian customers, now with the power of choice, can no longer be taken for granted and demand more.

What is even more dramatic is that the changes affecting the electric industry are shaking a pillar of the Canadian economy. The electric industry touches every home and business in Canada and reliable power is an essential ingredient for the competitiveness of our economy. Electric power generation, transmission and distribution utilities contribute almost $30 billion to the Canadian economy, with electrical equipment manufacturers contributing another $4 billion. This industry employs over 100,000 Canadians, but the Conference Board has estimated that 156,000 workers will be needed to carry out the renewal of Canada’s electricity infrastructure. Canada’s net exports of electricity and electrical products amount to billions of dollars every year. The Canadian electricity system is in need of massive infrastructure renewal. The Conference Board of Canada estimates that by 2030, close to $350 billion in new investment will be required just to maintain existing electricity capacity, with most of Canada’s non-hydro assets needing renewal or replacement by 2050. The importance of the electric industry scales up the potential of wealth creation, but also underlines the perils that we are facing: should the Canadian electric industry fail to renew itself for the challenges of the 21st century, the entire economy of Canada would suffer, with foreign service providers taking control and energy exports dwindling.

In conclusion, accelerating the transformation of the Canadian electric industry is essential. In an industry traditionally defined by centralized generation and rigid geographic boundaries between utilities, new linkages need to occur: utilities and customers, vendors and entrepreneurs, cities and businesses, ensuring that all see the opportunities that didn’t exist before and have the support they need to get their ideas to market quickly. The transformation of the electric industry will ensure that Canadians benefit from the billions of dollars to be invested in the electricity system. The structure of the industry will emerge transformed, with Canadian-owned service providers offering novel energy solutions, backed by a web of hardware, software, and professional service vendors. This will increase the opportunities for Canadians to export their energy, their expertise, and the fruit of their labor.

The Sun for a Penny

I recently presented at the Canadian Electricity Association (CEA) on the future of the industry. What would happen to the power industry if the cost to generate solar electricity reached 1¢/kWh? What could be the impact of a carbon tax? What are the business opportunities arising from the need for reliable power? While electric utilities have seen tremendous transitions during the 125-year history of the CEA, the current rate of development is unprecedented. To paraphrase a famous quote by Wayne Gretzky, utilities need to “skate to where the puck is going to be, not where it has been.” This presentation tried to provide power utilities with some insights into the future direction of the puck! See the presentation here: The Sun for a Penny 20170225a

The New Grid Needs to Be a Lot More Complicated

The Old Grid used to be relatively simple, with generation following load:

Old Grid

It is now a lot more complicated:

New Grid

The grid is transforming and getting more complicated.

  • We are decommissioning fossil plants to reduce GHG emission and nuclear plants because of safety concerns.
  • There is only so many rivers, so the solution of building new hydro plants is not sufficient.
  • We are then replacing fossil and nuclear base load plants with renewables that are intermittent.
  • To compound the problem of balancing the grid, loads are also becoming peakier, with reduced load factor. Interestingly, many energy conservation initiatives actually increase power peaks.
  • To connect the new renewable generation, we then need to build more transmission. The transmission network also allows network operators to spread generation and load over more customers – geographic spread helps smooth out generation and load.
  • Building new transmission lines face local opposition and takes a decade. The only other alternatives to balance the grid are storage … and Demand Management.
  • Another issue is that we are far more dependent on the grid that we used to be. With electrical cars, an outage during the night may mean that you can’t go to work in the morning. So, we see more and more attention to resiliency, with faster distribution restoration using networked distribution feeders as well as microgrids for critical loads during sustained outages.
  • Renewable generation and storage can more effectively be distributed to the distribution network, although small scale generation and storage are much more expansive than community generation and storage.
  • With distributed generation, distributed storage and a networked distribution grid, energy flow on the distribution grid becomes two-way. This requires additional investments into the distribution grid and a new attention to electrical protection (remember the screwdriver).

All of this costs money and forces the utilities to adopt new technologies at a pace that has not been seen in a hundred years. The new technology is expensive, and renewable generation, combined with the cost of storage, increases energy costs. There is increasing attention to reduction of operating costs and optimization of assets.

“Resilient Power for Sustainable Cities” Presentation at the Canadian Electricity Association

I presented this to senior managers of Canadian utilities attending the 24 February Distribution Council of the Canadian Electricity Association. It can be found on SlideShare at http://www.slideshare.net/bmarcoux/resilient-power-for-sustainable-cities.

Abstract

The cost of disasters has been increasing exponentially since the 1970s – and cities are mostly affected, which is not surprising since cities produce 80% of the world gross domestic product (GDP). Since the majority of disasters are related to climate events, cities are also part of the root cause, since they generate 75% of our greenhouse gas (GHG) emissions. Mayors, acting locally on a short feedback loop, view the challenges they face on a daily basis – it is about their constituents getting sick, having clean water, being warm or cool, holding productive jobs, commuting efficiently, surviving disasters. They see that a smart city needs, first and foremost, to be both resilient to face increasing disasters and sustainable to reduce its environmental impact and to improve quality of life – while being financially affordable

Cities can’t function without electricity. It moves subways and trains. It cools, heats and lights our homes and businesses. It pumps our water and keeps fresh the food we eat. And it powers the technologies that are the foundation of a smart city. By implementing smart grid technologies such as microgrids and distribution automation, electric utilities play a key role in making cities both resilient and sustainable. Yet, many electric utilities do not partner with mayors to work on cities’ resiliency and sustainability challenges. A better approach is to see city policy makers as major stakeholders and a driving force in modernizing the grid.

Have you talked to your mayor(s) lately?

Tutorial: Key Players in the Energy Markets: Rivalry in the Middle

See also the previous post.

The players described in the previous post have vastly different characteristics. The most striking difference is the level of rivalry.

IMG_2174

Distributors operate in a defined territory, often corresponding to a city, a state or a province, where they are the sole provider – thankfully, as there would otherwise be multiple lines of poles along roads. Given this monopoly, distributors are subjected to price regulation, meaning that the price they charge for the use of their infrastructure (poles, conductors, cables, transformers, switches, etc.) is set, typically equal to their costs plus an allowed return on their investment. This is done by filing tariffs that are approved by the regulatory body following a rate hearing.

Retail is often a competitive industry, as there is no structural barrier to having multiple players. However, some distributors are also given the retail monopoly over their territory. Some may also provide retail services in competition with other retailers. In those cases, the distributor-owned retailer is also regulated and has to seek approval of its rates, but other retailers typically do not, although they may have to file their rate plans.

It is possible to have multiple transmission companies operating in the same territory, each owing one or a few transmission lines. However, because those transmission lines are not perfect substitutes (they do not necessarily have the same end-points in the network) and because transmission capacity is scarce, electricity transmitter typically have regulated rates, although they may compete for new constructions.

System operators are monopolies over a territory, and they have to maintain independence. They are, in effect, monopolies, although system operators are often government- or industry-owned. Their costs are recharged to the customer base, directly or indirectly.

Large generators are in a competitive business, competing in an open market, although distributed generators, which are much smaller, usually benefits from rates set by a regulator or a government.

Tutorial: Key Players in the Energy Markets

I will be making a conference to investors later this year and I will also be training some people internally at my employer. The topics will touch on the electricity industry structure and I am preparing some material for it.

The industry can be quite complex in some jurisdictions. I boiled the complexity down to just this:

New Picture

Traditional large-scale generator own and maintain coal, natural gas, nuclear, hydro, wind and solar plants connected to transmission lines. Those are large plants – typically hundreds of megawatts.

Transmitters own and maintain transmission lines – the large steel towers seen going from large generators to cities. Those typically run at 120,000 volts and more, up to over 1,000,000 volts in some cases.

Distributors own and maintain the local infrastructure of poles and conduits going to customer sites. Those typically run at 1,200 to 70,000 volts, usually stepped down to 600 volts. 480 volts, 240 volts or 120 volts for connection to customers.

Most customers are connected to distributors, although some large industrial facilities (such as aluminum smelters) are directly connected to transmission lines.

While customers are connected to distributors, they purchase electricity from an independent retailer or from the retail arm of a distributor.

With customer installing distributed generation on their premises, they sell back power to the market, often through aggregators.

Retailers buy electricity from generators in an energy market – like a stock exchange, but for electricity.

By definition, the energy produced at any instant must be equal to the energy taken by customers, accounting for a small percentage of losses in transmission and distribution. (We are starting to see large-scale storage operators, which may act as both consumer and generator, depending they are charging or releasing electricity in the network.) This critical balance is maintained by the system operator that direct generators to produce more ore less to match load; in some case, the system operator will also direct distributors to shed load (customers) if generation or transmission is insufficient to meet the demand.

The next post will deal with energy and money flows in the market.