Monthly Archives: November 2022

Fast chargers: over-rated?

Many assume that adoption of light-duty electrical vehicles (EV) will be limited until EVs recharge as fast as combustion vehicles refuel at a gas station. That’s not quite true. The truth will not surprise many EV drivers, but (warning!) some combustion vehicle drivers might be shocked.

For EV drivers to experience a gas station-like experience, charging needs to be complete within minutes, i.e. fast charging, the faster the better, it seems. The need largely arises from the possibility of cross-country road trips, leading to an accent on fast charging along highway corridors. Who doesn’t dream of cruising top-down in a roadster on highway 66 or the Trans-Canada highway?

What’s the real need? The share of energy provided by public fast charging is around 10% to 15%, depending on where you are, and most of this is in cities, not along highway corridors. This breakdown is not surprising, as most EV drivers charge at home, which is also the least expensive place to charge. After home, workplace is the second least expensive place to charge, with some employers providing free charging. For public charging, level 2 chargers are much more economical than fast chargers to install and operate, cost less than half as expensive for drivers to use, are easier to handle (having lighter cables) and may often be more convenient (no need to wait, just park, plug and come back some hours later or the next morning). Given this, plus the fact that the range of modern EVs is more than most people usually need in a day, level 2 chargers at destinations (as well as “slow” fast chargers, like 25 kW or 50 kW) are likely to retain a higher share of charging energy than public super fast charging. Note that 25 kW or 50 kW chargers at commercial destinations like grocery stores are very convenient: you may get a week worth of veggies, milk, meat and driving in one visit, all without waiting.

Corridor fast charging is a last resort, used if other alternatives (home, workplace, and destination charging) are not suitable. This means that fast corridor chargers have relatively low time utilization, but the pattern is peaky, resulting in congestion at certain times, such as Friday afternoon as people leave town for the weekend. The low market share of fast chargers will clearly be a challenge for operators of gas stations, as 100% of fuel is now sold at gas stations. And, with high peaks, congestion will occur even with low average utilization. Operators of fast corridor chargers will have no choice but to increase prices further for captive drivers who have no other alternatives.

However, a good fast charging infrastructure along highway corridors is nevertheless essential, as EV drivers sometimes need it, when they go on road trips. Furthermore, the fast charging infrastructure is also a major showcase for people considering buying an EV. Without it, as infrequently it might be used, few combustion drivers would consider an EV.

Hydrogen Point of View

Over the last couple of years, I have been approached to describe the hydrogen fueling infrastructure or for opportunities related to hydrogen production or distribution. So, here is my point of view for all to know.

  • Production of low-carbon (“green”) hydrogen will be essential to replace the ?60 millions of tons of fossil (“gray”) hydrogen used as feedstock for various chemical processes, such as making fertilizer. This is a large decarbonization challenge, and it will be decades before the production of low-carbon hydrogen can catch up. Note that another ?60 millions of tons of fossil hydrogen are used to upgrade crude oil and remove sulfur during refining, but this use of hydrogen will diminish as we transition away from fossil fuel. 
  • Molecular hydrogen could be used as an energy carrier, but it is a lousy one, regardless of its color. In fact, the ?120 millions of tons of fossil hydrogen produced now are not used as an energy carrier, except for some small niches, like lunar rockets. Made from low-carbon electricity using electrolyzers, hydrogen is a highly inefficient energy carrier, with only 1/4 to 1/3 of the energy used in the process recovered when the hydrogen is fed to a fuel cell or simply burned for heat. Hydrogen as an energy carrier is also inefficient, as it is difficult to transport and store it, exemplified by the difficulty Nasa had when launching its latest lunar mission. 

As an energy carrier, poor efficiency and effectiveness of hydrogen results in poor economics versus direct electrification of transportation and heat, for most applications. The niche applications where hydrogen could be used will also suffer from low volume in comparison to direct electrification solutions, resulting in worsening economics. Unless you are Nasa, you should probably stay away from hydrogen as an energy carrier. 

Note that hydrogen is not an energy source, but it could be a carrier. While hydrogen is a very common element, it is not an energy source, as it cannot be mined or found in a form that is usable to generate energy. It is an energy carrier when electricity is used to produce molecular hydrogen, which can be converted back to electricity or heat, albeit not efficiently. 

A final note on my personal history: I built an electrolyzer when I was 13 years old. I lit up the resulting hydrogen to make a bang — a rather big bang, it turned out. My mother was not impressed and told me, “never again”. I have a lot of respect for my mother, and perhaps you should too. 

AIEQ Panel on Electricity Supply Chain

On November 8, 2022, I chaired a discussion panel on supply chains at the Québec Electricity Industry Association (AIEQ) conference. 

The supply chain of the electricity industry is undergoing a profound transformation, fueled by the electrification of the economy (presented by Mathieu Lévesque, ing., MBA, from Dunsky Energy + Climate Advisors). While growth may be good news, it is also straining the supply chain, including raw materials (like metals and graphite), goods and services. 

For entrepreneurs in Québec, the US market is of great importance. Jean-François Hould (Québec Government Office in Washington) presented the recent legislative and policy changes in the US, including “America’s Strategy to Secure the Supply Chain for a Robust Clean Energy Transition”. Clearly, our neighbors to the South also see the supply chain as the key to their competitiveness and economic growth. US firms can be both our customers and our suppliers, but also our competitors in a strained supply chain. 

Mihaela Stefanov, MBA presented the perspective of Boralex Inc., hinged on the issues of price inflation, geographic concentration of manufacturing and ESG (Environmental, Social, and Governance). 

Similarly, Martina Lyons (International Renewable Energy Agency (IRENA)) showed that high price volatility, security of supply (including “friendshoring”) and ESG are the key issues with the supply of raw materials. 

Overall, these issues — price inflation and volatility, security of supply and ESG — are the defining characteristics of the emerging supply chains. For Québec companies selling abroad, these can be a source of competitive advantage, with its clean electricity grid, trustworthiness, and strong ESG record. On the other hand, sourcing raw materials and goods in a strained supply chain expose the same companies to these defining characteristics. Balancing these opposite forces will require careful leadership and collaboration among all stakeholders in Québec’s electricity ecosystem. 

Finally, I would like to thanks all the panelists for this engaging discussion.