Monthly Archives: December 2017

Strained Customer Relationships in the Future of Electric Utilities?

Low-cost renewable energy and energy storage are reshaping the Canadian electricity industry (see http://benoit.marcoux.ca/blog/canadas-electricity-industry-in-2030/). Along the way, new regulatory frameworks, energy choice, and competition from new energy service providers will transform the relationships between utilities and their customers. If what happened in other industries that went through similar transformations is any indication, such as airlines and telecoms, those relationships could be strained. Utilities should learn and apply lessons from those industries, hopefully not making the same mistakes again.

Twenty years ago, an Angus-Reid survey put Bell Canada #2 among most admired corporations in Canada. In 2017, Bell Canada ranked #291 in a University of Victoria brand trust survey. People love their Apple or Samsung phones, are addicted to Facebook to stay in touch with friends, and use Microsoft Skype to see remote family members, but they mostly hate their phone company.

The transformation of the telephone industry in Canada really started in the 1980s with businesses being able to lease high-capacity dedicated lines from other providers, such as CNCP Communications. Businesses were clamoring for more, and the Canadian regulator, the CRTC, allowed resale of telephone companies services, first dedicated lines and then local phone services. Canadian long-distance market developed slowly until 1992, when Canada unbundled local and long-distance telephone services and allowing competitor entry into long-distance services. When cellular service became more popular around the year 2000, it also offered an alternative to local services. However, if competition in residential long-distance services is seen as a milestone, the fact is that it all started with businesses leasing high-capacity lines from competitive providers — businesses were already resenting being coerced by phone companies. Later, when residential customers got choice, they too got dissatisfied.

It is still early, but we may be seeing the same unfortunate trend with electric utilities. When listening to renewable energy developers or commercial businesses, you already hear an undercurrent of dissatisfaction, although the reality is that there is not much they can do. With low-cost renewable energy, energy storage and microgrids, businesses will start to see alternatives. Eventually, the same will happen with residential customers. Unbundling of the wire business from energy retail will bring more choices. You can readily see a parallel with telecoms .

This is a very real risk for utilities: in 2030, there will be many more potential friction points between utilities and customers than there are now. In addition to traditional transactions such as new connects, outage reporting, energy efficiency and bill payment, there will be multiple demand response schemes, EV charging and energy sales, bringing new expectations along. Even if customer satisfaction surveys are good now, they may not stay that way.

I have worked in the telecom industry as head of marketing, in customer care and as a business consultant — I have seen what happened there. I have also seen some of the best and the worst of stakeholder communications at electric utilities — including while I directed a large smart meter deployment, a very challenging activity for customer relationships. Beyond the obvious like using social media, online self-support, and efficient call center operations, here is what I have to offer to electric utilities in improving their chances to maintain healthy customer relationships as the industry is transforming:

  • Lead the change. Customers want solar panels on their roofs and go off-grid? Make it easy for them! Green Mountain Power (VT) does it. Regulation will be performance-based? Propose it now! ENMAX (AB) did it. Customers want behind the meter energy storage? Install it for them! PG&E does it.
  • Show what you do. The electricity business is complex and not appreciated well enough. For instance, grid upgrades should be media events — see this FPL (FL) video, “crews will be installing automated switches”: https://youtu.be/cs-lMREscpY. The electricity business is highly technical and sometimes dangerous — it deserves more attention in plain words.
  • Understand changing customer expectations. With increasing dependence on reliable power for our vehicles and electronic devices, plus distributed generation earning revenue for customers, outage frequency will become a more and more important factor for customer satisfaction.
  • Partner with community leaders. Mayors and other community leaders, acting locally on a short feedback loop from their constituents, view the challenges of clean energy and climate change on a daily basis — it is about their people getting sick, having clean water, being warm or cool, holding productive jobs, commuting efficiently, and surviving disasters. Yet, few electric utilities work with cities on resiliency and sustainability challenges.

Even with all the talk from consultants about customers wanting more participation, the fact is that electricity will never have the emotional content of communicating with friends and family, would it be telephone or Facebook. This only makes it harder to ensure that electric utilities can maintain healthy customer relationship. Still, it can be done.

Are you up to the challenge?

A Critique of the National Energy Board Assessment on Canada’s Energy Future

The NEB published its 2017 assessment on Canada’s energy future a few weeks ago. The NEB, purposely an independent national energy regulator, published this report, part of the Energy Futures series, to be used, among other things, as an input for sound policy making. However, I find it lacking coherent vision.

Curiously, the assessment starts with an admission of failure, with its first “key finding” that the 2017 Energy Futures report is the first where fossil fuel consumption peaks within the projection period. Indeed, each subsequent update since the first Energy Futures in 2007 shows lower and lower fuel use projections:

The chart can be interpreted in two ways: the NEB had it wrong in the past, and now they have it right, or, the NEB must again be getting it wrong. Looking at the assumptions shows that it is the later. While the NEB projects a peak in consumption, it also projects higher oil prices (from $50 to $65–80 per barrel of Brent, depending on scenarios), which is rather surprising, especially since it also projects a constant increase in supply for oil sands, up 59% by 2040 in comparison to 2016.

While the report includes projected price for fuel and gas, it, strangely, does not include projection for the price of electricity. There are, however, a number of projections on the change in generation mix and underlying cost and demand trends.

All scenarios show a (modest) increase in the share of electricity in the national energy mix. The “Technology Case” scenario, the most optimistic one toward clean energy, shows a shift toward more electricity and reduced overall demand in the end-use sector, and more renewable generation in the electricity sector—but the changes are rather small. This modesty is justified by a number of assumptions.

The report projects an increase in new electric passenger vehicles—but growth flattening after 2025, justified by the phase out of incentive programs. Essentially, the NEB assumes that EVs will never be truly competitive with internal combustion cars.

On renewables, the NEB an increase in generation and a decrease in costs under all scenarios. However, the projections are nevertheless surprising. The report acknowledges that solar costs have been coming down 20% a year since 2010:

Then, the report projects that future costs will continue to drop at … 3% to 5% per year:

There is no explanation on what might have happened in 2016 or 2017 to explain this surprising shift.

As a consequence, the projection for non-hydro renewable is rather modest, with much slower growth in the future:

I cannot condone these NEB projections, as they run contrary to what I see in the market.

I just hope that no one uses them to justify how to spend my tax dollars.

Canada’s Electricity Industry in 2030

The cost of solar and wind energy and energy storage have been coming down at double-digit rate per year for many years. Every year. Double-digit percentages. Again. It continues. Tirelessly. No end in sight. Capitalism and innovation at their best. No government regulation nor corporate ego will stop it. And it will reshape – no, it is reshaping – the power industry in Canada.

By 2030, renewables will be so inexpensive that they will have upended the traditional economics of the industry. But we can see this transformation to its logical conclusions, based on how the power industry is evolving elsewhere in the world and how other industries went through similar transformations.

If ever lower-cost renewables and energy storage triggered the reshaping of the electricity industry, other factors tint how industry stakeholders: the impacts of climate change, our increased dependence on reliable electricity, and the higher cybersecurity threats. Each of these factors helps define how utilities, customers, regulators, policy makers and product and service vendors react to or take advantage of the situation, sometimes trying to accelerate change, sometimes attempting to slow down. However, if broad conclusions can be drawn, we need to be mindful that local specificities in resource availability, cost structure and ownership will mean that the end game will not exactly be the same everywhere.

Wind, solar and storage are not only becoming increasingly cost effective, but doing so at a much smaller size than traditional generation. By 2030, customers will be installing solar panels on their side of the electricity meter, on rooftops and backyard, even in absence of incentives or net metering, taking whatever “free electrons” they can and wasting what they will not be able to use or sell. If wasting electricity seems heresy, think about the iPhone in your pocket: it has more computing power than a supercomputer of a generation ago, and yet it is idling most of the time, its vast computing power wasted. Yet, the iPhone has transformed our daily relationship to computing. Similarly, inexpensive renewables and storage will transform our relationship to electricity.

Even with this abundance of distributed generation, grid defection will be the exception, as customers keep the utility connection as a last resort and because space constraints and the low energy intensity of solar and energy storage make it impractical to generate all the energy needed in urban areas. Nevertheless, abundance will cause energy (kWh) price to plummet, especially since electricity consumption has plateaued in Canada, taking traditional utility revenue along.

Commercial and industrial customers, as well as some residential customers, will take this a step further by having energy storage as well. By adding storage, customers can arbitrage time-of-day rates or peak demand charges, shifting consumption at other times to reduce costs. Having local generation and storage also turns a customer site into a microgrid able to maintain power during grid disturbance or outage, maintaining production for businesses and food stuff cold for consumers. Some smart communities and campuses will also become microgrids regrouping multiple customers and utility-scale resources for better resiliency and efficiency.

Given how low-cost renewables and storage are advancing, by 2030, if not before, the traditional, centralized grid will have been transformed into a digital grid of microgrids integrated to distributed renewable energy resources. This will have repercussions across the industry, transforming competition, energy markets, regulation, grid architecture and utility operations.

Retail Unbundling and Competition

Having so much customer-owned distributed generation will put pressure on policy makers and regulators to allow retail competition, so that distributed generators may sell surpluses on open markets. With retail competition, customers have more choices in what energy they use, what energy they sell, and how they use it, including sophisticated demand response programs to support energy balancing on the grid.

The retail arm of utilities and the wire business will be unbundled (as it is already the case in Alberta), allowing energy service providers to compete in energy retail, perhaps along with utilities’ unregulated subsidiaries. This will also expose the capacity-driven cost of the distribution grid, now charged separately. This is similar to long-distance telephone service unbundling in the 1990s. With competition forcing energy market players to keep price low, energy price regulation will be lightened, just like telephone regulations are much lighter now than they were 25 years ago.

Renewed Energy Markets

Today’s energy markets were not designed for the large number of players distributed across the grid with varying capabilities that we will have in 2030. Energy markets will evolve to improve the way electricity is priced, scheduled and procured in order to ensure reliability, transparency, efficiency and at the lowest cost. Through the energy market, distributed energy storage systems will accumulate electricity when the sun is shining or the wind blowing, releasing it at time of use. Demand management will shape the load curve to better match availability of inexpensive renewable resources. Electric vehicles will be charged during the day, and give power back to the grid if needed.

New transactional technologies, such as blockchain, may be required to deal with the sheer volume of automated transactions. Market intermediaries to act on behalf of distributed asset owners, simplifying the process and offering financing.

Performance-Based Regulation

In the traditional Canadian rate-of-return regulatory framework, electric utilities earn a return on investments based on the depreciated cost of past capital expenditures approved by the regulator. This model will no longer be suitable in 2030 to regulate the wire business of utilities because of its “capital bias”, its insensitivity toward grid reliability, its inhibition of innovation, and its short-termism. The regulatory regime will evolve to incentivize lower total costs (including incentives to use non-wire alternatives such as third-party energy storage) and better reliability (to avoid momentary service interruptions that trip distributed generators offline), with utilities freed to implement innovative solutions without regulators and interveners second-guessing investment in technology. Multi-year incentive plans will allow utilities to plan ahead better. Similar approaches already exist, as in Great Britain, where the regulator developed its RIIO (Revenue = Incentives + Innovation + Outputs) 8-year model.

High-Availability Distribution Grid?

By 2030, we will obviously not have replaced all poles, conduits and wires that make up the legacy grid – nor should we try to. Utilities, however, will have transformed this critical infrastructure to make it resilient (especially against the impacts of climate change) and reliable (to keep now-essential distributed energy resources online).

We will more storm-proofing of critical feeders, including undergrounding of mainlines, with intelligent protection devices on laterals, near customers and distributed energy resources to minimize disturbance while faults are being cleared on overhead lines. Protection devices, switches and sensors will be automated to the best extent possible and remotely operated, from a control room or from a truck, freeing operators and crew to better manage and repair outages. Remote control will allow protection settings to be more sensitive to limit the risk of forest fires caused by the electrical grid.

New Operating Model in Distribution

In a technology-intensive environment in constant innovation and with ever-increasing cybersecurity threats, utilities will develop new skills and will learn to leverage partnerships with vendors. This is very different than traditional distribution grid operation, still largely relying on physical work and manual switching.

In their new high-tech and fast-changing environment, utilities will implement new business process and organizational structures to take advantage of the latest technology innovations. At the same, new skills technology skills are required, including cybersecurity. Rather than doing things internally, as they are often used to, utilities will partner with technology vendors that have the scale and the expertise to provide better products and professional services at a lower cost. Essentially, utilities will follow the path already taken by telecom network operators.

New business models in the industry

New businesses will cater to energy customers, distributed generators and microgrid owners, removing complexity and turning energy into services.

Energy customers, distributed generators, and microgrid owners will be supported by an ecosystem of third-party vendors and unregulated utility subsidiaries. Vendors will support customers with low-cost financing and technology to optimize the use of distributed assets on energy markets, lowering costs. For utilities, this is a clear growth opportunity, not limited to traditional territories. With transportation electrification, the electric industry will essentially replace the petroleum industry, with new businesses supporting public charging of electric vehicles – a welcome development as it could prevent further reduction in electricity consumption.

Conclusion

This new, distributed and digital-enabled electrical grid will be more resilient and sustainable. Its resiliency is based on multiple and alternate energy local sources and paths, with reduced reliance on large infrastructure. This new resilience is welcomed given the growing importance of electricity in energy use, as residential and industrial customers are dependent on electricity to power our modern life in smart communities and with the advent of electrical transportation. The new grid will also be more sustainable, reducing the environmental impact of communities and improving quality of life – while being financially affordable.

Preparing for the future is essential for Canadian electric utilities and new players. In an industry traditionally defined by centralized generation and rigid geographic boundaries between utilities, new linkages need to occur: utilities and customers, vendors and entrepreneurs, cities and businesses, ensuring that all see the opportunities that didn’t exist before and have the support they need to get their ideas to market quickly. The structure of the industry will emerge transformed, with Canadian-owned service providers offering novel energy solutions in Canada, backed by a web of hardware, software, and professional service vendors. Realizing this vision will increase opportunities for Canadians to export their energy, their expertise, and the fruit of their labor.