Category Archives: Uncategorized

Customers of Electric Utilities Are Redefining Quality

Traditional utility wisdom in Canada is that customers are satisfied with the current level of reliability and that improving reliability would only increase costs and push rates up.

The new reality of electric utilities upends this traditional wisdom.

Customers are redefining what is meant by quality. Traditionally, Canadian Utilities used duration of interruptions per year, or SAIDI[i], as their main measure of reliability. Some utilities report the frequency of interruptions per year, SAIFI, as well. A limitation of SAIDI and SAIFI is that interruptions of less than a minute are not included, presumably under the assumption that customers do not care that much about short interruptions. This might have been true in the analog world of years past, but it is not anymore, with even a short interruption resetting our electronic devices. Furthermore, with the fuse saving protection strategy that most Canadian Utilities have adopted on their distribution feeders, short interruptions happen more frequently than longer ones, and are therefore noticed more.

Even a short interruption resets common electronics, like my microwave oven above. This gave birth to the “blinking clock” syndrome, a stark reminder to residential customers that an outage occurred and that their utility has failed them – again. (Photo by the author)

ENMAX, when justifying its distribution automation projects within the performance-based regulation scheme of Alberta, based its analysis on the cost of sustained and momentary service interruptions, with the values for its various customer classes as shown in the table below.[ii]

Table: Estimated ENMAX Customer Class Interruption Costs

Duration Residential Commercial Industrial Weighted Average
30 Minutes

 

$3.02 $992 $3,641 $92.77
Momentary
(% vs. 30-Min.)
$2.71 (90%) $757 (76%) $2,354(65%) $69.12(75%)
Customer mix 92.2% 7.3% 0.5% 100%

The table is interesting for two reasons:

  • On average, the costs to customers of a momentary interruption is 75% that of the cost of a 30-minute interruption, but up to 90% for residential customers. The very small difference in cost between a momentary outage and a 30-minute outage explains why outage frequency is a higher concern than length of outages for residential customers.[iii]Due to the prevalence of the fuse saving protection strategy on electrical distribution feeders in Canada,[iv]there are far more momentary service interruptions than sustained ones – momentary interruptions therefore become the primary concern of customers.
  • The bulk of the economic cost of service interruptions is borne by commercial and industrial customers. While residential customers are far more numerous, the cost per interruption is low. However, residential customers can be more vocal in their complaints in social and traditional media.

This situation is likely to get worse with widespread customer-owned distributed energy resources: owners of distributed energy resources actually lose money during power disturbance. Distributed generators or resources may be thrown offline often for minutes, for safety reasons and to protect the equipment. This results in loss revenue for owners of distributed generators selling back to the grid, or additional costs for those who were offsetting power otherwise purchased from the grid. Overall, the percentage of time when distributed generators are offline because of service interruptions is relatively small, and so is the unsold energy or the energy additionally bought by the customers while waiting for generation to come back online. However, those interruptions may also cause power generation or grid support contracts to be broken, which may carry penalties. Customers may also have to pay additional demand charges, often a large share of the utility costs of business customers.

Service interruptions also cost money, to utilities which is ultimately paid for by customers through higher rates – another key determinant of customer un-satisfaction. First, service interruptions cause power flow and voltage fluctuations as distributed generators trip and come back, and loss of generation and dynamic resources for the grid operator. In an electric network relying partly on distributed energy resources, service interruptions mean additional complexity to maintain stability of the grid and higher costs for network operators who then have to rely on backup resources. Service interruptions even increase operating costs. Fuse saving does not always work: on average, about half of fuse replacements have unknown causes or causes that should normally have been eliminated by fuse saving, such as animal contact.

By the way, the telecom industry also went through a redefinition of what customers mean by quality. It used to be that the main quality measure was voice sound quality during a call[v]. However, voice sound quality has actually gone down in the last decades – the rotary black phone in your grandmother’s old house sounded better than your new iPhone. Nowadays, customer satisfaction is driven more by the convenience of mobility and the possibility of easily doing videoconferencing or multiple parties calls.

In summary, with increasing dependence on reliable power for modern way of life, plus distributed generation earning revenue for customers, outage frequency will become a more and more important factor for customer satisfaction. All this being said, there is hope – new smart grid approaches and protection strategies can result in fewer service interruptions, leading to higher customer satisfaction and lower cost for utilities.


[i]       SAIDI means System Average Interruption Duration Index. SAIDI is the average duration of all the outages seen by customers over the course of a year. In Canada, only interruption durations of more than 1 minutes accrue to SAIDI. Interruptions of less than a minute are considered momentary and do not count toward SAIDI.

[ii]       Evaluation of PowerMax Distribution Automation Strategy, ENMAX Power Corporation, prepared by Quanta Technology, November 29, 2011, page 23.

[iii]     Assessing Residential Customer Satisfaction for Large Electric Utilities, Lea Kosnik et al., Department of Economics, University of Missouri—St. Louis, May 2014.

[iv]      Fuse saving is an electrical protection strategy used on many distribution feeders in Canada. The objective is to avoid that fuses installed on lateral taps blow for a non-persistent fault, such as an animal contact or a lightning strike. With fuse saving, a mainline or station a circuit breaker or recloser is used to operate faster than the lateral tap fuses. A few seconds after an initial fault, the breaker reclose, re-establishing power. If the fault is non-persistent, power will be restored. If not, it may retry later. If the fault is persistent, the breaker will eventually reclose and let the lateral fuse blow, isolating the fault. Because most faults are non-persistent, fuse saving prevents needless fuse blow, avoiding sustained service interruption for customers on the affected lateral. The main disadvantage of fuse saving is that all customers on the circuit see a momentary interruption for lateral faults.

[v]       The quality of a call is given by its Mean Opinion Score (MOS), a subjective measurement where listeners sit in a quiet room and rate a telephone call on a scale of 1 to 5. It has been in use in the telephony industry for decades and was standardized in an International Telecommunication Union (ITU) recommendation.

The Sun for a Penny

I recently presented at the Canadian Electricity Association (CEA) on the future of the industry. What would happen to the power industry if the cost to generate solar electricity reached 1¢/kWh? What could be the impact of a carbon tax? What are the business opportunities arising from the need for reliable power? While electric utilities have seen tremendous transitions during the 125-year history of the CEA, the current rate of development is unprecedented. To paraphrase a famous quote by Wayne Gretzky, utilities need to “skate to where the puck is going to be, not where it has been.” This presentation tried to provide power utilities with some insights into the future direction of the puck! See the presentation here: The Sun for a Penny 20170225a

The New Grid Needs to Be a Lot More Complicated

The Old Grid used to be relatively simple, with generation following load:

Old Grid

It is now a lot more complicated:

New Grid

The grid is transforming and getting more complicated.

  • We are decommissioning fossil plants to reduce GHG emission and nuclear plants because of safety concerns.
  • There is only so many rivers, so the solution of building new hydro plants is not sufficient.
  • We are then replacing fossil and nuclear base load plants with renewables that are intermittent.
  • To compound the problem of balancing the grid, loads are also becoming peakier, with reduced load factor. Interestingly, many energy conservation initiatives actually increase power peaks.
  • To connect the new renewable generation, we then need to build more transmission. The transmission network also allows network operators to spread generation and load over more customers – geographic spread helps smooth out generation and load.
  • Building new transmission lines face local opposition and takes a decade. The only other alternatives to balance the grid are storage … and Demand Management.
  • Another issue is that we are far more dependent on the grid that we used to be. With electrical cars, an outage during the night may mean that you can’t go to work in the morning. So, we see more and more attention to resiliency, with faster distribution restoration using networked distribution feeders as well as microgrids for critical loads during sustained outages.
  • Renewable generation and storage can more effectively be distributed to the distribution network, although small scale generation and storage are much more expansive than community generation and storage.
  • With distributed generation, distributed storage and a networked distribution grid, energy flow on the distribution grid becomes two-way. This requires additional investments into the distribution grid and a new attention to electrical protection (remember the screwdriver).

All of this costs money and forces the utilities to adopt new technologies at a pace that has not been seen in a hundred years. The new technology is expensive, and renewable generation, combined with the cost of storage, increases energy costs. There is increasing attention to reduction of operating costs and optimization of assets.

GTM Squared Report

I just finished reading the annual survey of utilities prepared by GTM Squared (http://www.greentechmedia.com/squared/read/annual-survey-report-2016-the-future-of-global-electricity-systems). I found it a useful reference to understand the challenges faced by utilities worldwide, and I thought of sharing some interesting highlights:

  • 3/4 of utilities say that regulatory hurdles are the greatest challenge they face today. Preference is to develop market-based reforms, as well as clear interconnection/net metering rules – in other words, mechanisms that deal with/assign value to Distributed Energy Resources. Note that DER (such as distributed generators and storage) will play an increasing role in utilities worldwide.
  • Half of respondents see the consumers at the forefront of the industry’s evolution. However, it is surprising that utilities in the same survey do not put a greater priority on customer engagement.
  • On storage, respondents see an increasing emphasis toward actual projects, and less on the physics and technology of storage. DER vendors now offer better systems intelligence and grid integration to companies focused on building a next-generation power grid (more sustainable and more resilient). Energy storage is now living up to the hype, having seen record installations in 2015.